

ВОЈНОСАНИТЕТСКИ ПРЕГЛЕД



Часопис лекара и фармацеута Војске Србије

Military Medical and Pharmaceutical Journal of Serbia

Vojnosanitetski pregled

Vojnosanit Pregl 2026; January Vol. 83 (No. 1): pp. 1–66.

VOJNOSANITETSKI PREGLED

The first issue of *Vojnosanitetski pregled* was published in September 1944
The Journal continues the tradition of *Vojno-sanitetski glasnik* which was published between 1930 and 1941

PUBLISHER

Ministry of Defence of the Republic of Serbia, University of Defence, Belgrade, Serbia

PUBLISHER'S ADVISORY BOARD

Brigadier General Prof. **Boban Đorović**, PhD (President)
Col. Assoc. Prof. **Srđan Blagojević**, PhD (Deputy President)
Marko Andrun, jurist, general secretary
Prof. **Sonja Marjanović**, MD, PhD
Col. **Miloje Ilić**
Assoc. Prof. **Dragan Stanar**, PhD
Assoc. Prof. **Ivana Stevanović**, PhD

INTERNATIONAL EDITORIAL BOARD

Assoc. Prof. (ret.) **Mario Abinun**, MD, PhD (UK)
Prof. **Dejan Bokonjić**, MD, PhD (Bosnia and Herzegovina)
Prof. **Marla Dubinsky**, MD (USA)
Prof. **David A. Geller**, MD (USA)
Prof. **Predrag Gligorović**, MD, MHA (USA)
Prof. **Zoran Ivanović**, MD, PhD (France)
Prof. **Nebojša Nick Knežević**, MD, PhD (USA)
Assist. Prof. **Boštjan Lanišnik**, MD, PhD (Slovenia)
Prof. (ret.) **Desa Lilić**, MD, PhD (UK)
Prof. **Janko Ž. Nikolic**, MD, PhD (USA)
Prof. **Mirjana D. Pavlović**, MD, PhD (USA)
Prof. **Vesna Petronić-Rosić**, MD, MSc (USA)
Assoc. Prof. **Chaitanya P. Puranik**, MDS, PhD (USA)
Prof. **Corey A. Siegel**, MD, MSc (USA)
Assoc. Prof. **Lina Zuccatosta**, MD (Italy)

EDITORIAL BOARD (from Serbia)

Editor-in-Chief
Prof. **Dragana Vučević**, MD, PhD
Prof. (ret.) **Bela Balint**, MD, PhD, FSASA
Prof. **Vesna Begović-Kuprešanin**, MD, PhD
Assist. Prof. **Suzana Bojić**, MD, PhD
Prof. **Snežana Cerović**, MD, PhD
Brigadier General (ret.) Prof. **Miodrag Čolić**, MD, PhD, FSASA
Prof. **Dragana Daković**, DDM, PhD
Prof. (ret.) **Silva Dobrić**, BPharm, PhD
Prof. **Viktorija Dragojević Simić**, MD, PhD
Col. Prof. **Boban Đorđević**, MD, PhD
Prof. **Vladimir Jakovljević**, MD, PhD
Prof. **Marija Jevtić**, MD, PhD
Assoc. Prof. **Igor Končar**, MD, PhD
Prof. **Olivera Kontić-Vučinić**, MD, PhD
Col. **Branko Košević**, MD, PhD
Assoc. Prof. **Boško Milev**, MD, PhD
Assoc. Prof. **Dragana Miljić**, MD, PhD
Assoc. Prof. **Raša Mladenović**, DDM, PhD
Assoc. Prof. **Dejan Orlić**, MD, PhD
Prof. (ret.) **Miodrag Ostojić**, MD, PhD, FSASA
Lieut. Col. Assoc. Prof. **Aleksandar Perić**, MD, PhD
Col. Prof. **Milan Petronijević**, MD, PhD
Assist. Prof. **Dejan Pilčević**, MD, PhD
Prof. (ret.) **Dorđe Radak**, MD, PhD, FSASA
Assoc. Prof. **Nemanja Rančić**, MD, PhD
Prof. **Dušica Stamenković**, MD, PhD
Assoc. Prof. **Zvezdana Stojanović**, MD, PhD
Assist. Prof. **Aleksandra Vukomanović**, MD, PhD
Col. Prof. (ret.) **Miroslav Vukosavljević**, MD, PhD

ISSN 0042-8450
eISSN 2406-0720
Open Access
(CC BY-SA)

Technical Secretary and Main Journal Manager

Aleksandra Gogić, PhD

EDITORIAL OFFICE

Editorial staff: Gorica Gavrilović, MBiol,
Snežana R. Janković, primarius, MD

Language editor: Mila Karavidić

Technical editor: Dragana Milanović

Proofreading: Jovana Zelenović

Technical editing: Vesna Totić, Jelena Vasilj

Editorial Office: University of Defence, Faculty of Medicine of the Military Medical Academy, Center for Medical Scientific Information, Crnotravska 17, 11 040 Belgrade, Serbia. E-mail: vsp@vma.mod.gov.rs

Papers published in the *Vojnosanitetski pregled* are indexed in: Science Citation Index Expanded (SCIE), Journal Citation Reports/Science Edition, SCOPUS, Excerpta Medica (EMBASE), Google Scholar, EBSCO, Biomedicina Serbica, Serbian Citation Index (SCIndex), DOAJ. Contents are published in *Giornale di Medicina Militare* and *Revista de Medicina Militara*. Reviews of original papers and abstracts of contents are published in *International Review of the Armed Forces Medical Services*.

The Journal is published monthly. Subscription: Giro Account No. 840-19540845-28, refer to number 122742313338117. To subscribe from abroad phone to +381 11 3608 997. Subscription prices per year: individuals 5,000.00 RSD, institutions 10,000.00 RSD, and foreign subscribers 150 €

VOJNOSANITETSKI PREGLED

Prvi broj *Vojnosanitetskog pregleda* izašao je septembra meseca 1944. godine
 Časopis nastavlja tradiciju *Vojno-sanitetskog glasnika*, koji je izlazio od 1930. do 1941. godine

IZDAVAČ

Ministarstvo odbrane Republike Srbije, Univerzitet odbrane, Beograd, Srbija

IZDAVAČKI SAVET

Prof. dr **Boban Đorović**, brigadni general (predsednik)
 Prof. dr **Srđan Blagojević**, pukovnik (zamenik predsednika)
Marko Andrun, pravnik, generalni sekretar
 Prof. dr sc. med. **Sonja Marjanović**
Miloje Ilić, pukovnik
 Prof. dr **Dragan Stanar**
 Prof. dr **Ivana Stevanović**

MEĐUNARODNI UREĐIVAČKI ODBOR

Prof. dr sc. med. **Mario Abinun**, u penziji (Velika Britanija)
 Prof. dr sc. med. **Dejan Bokonjić** (Bosna i Hercegovina)
 Prof. dr med. **Marla Dubinsky** (SAD)
 Prof. dr med. **David A. Geller** (SAD)
 Prof. dr med. **Predrag Gligorović** (SAD)
 Prof. dr sc. med. **Zoran Ivanović** (Franuska)
 Prof. dr sc. med. **Nebojša Nick Knežević** (SAD)
 Doc. dr sc. med. **Boštjan Lanišnik** (Slovenija)
 Prof. dr sc. med. **Desa Lilić**, u penziji (Velika Britanija)
 Prof. dr sc. med. **Janko Ž. Nikolic** (SAD)
 Prof. dr sc. med. **Mirjana D. Pavlović** (SAD)
 Prof. mr. sc. med. **Vesna Petronić-Rosić** (SAD)
 Prof. dr sc. stom. **Chaitanya P. Puranik** (SAD)
 Prof. mr. sc. med. **Corey A. Siegel** (SAD)
 Prof. dr med. **Lina Zuccatosta** (Italija)

UREĐIVAČKI ODBOR (iz Srbije)

Glavni i odgovorni urednik
 Prof. dr sc. med. **Dragana Vučević**

Akademik **Bela Balint**, u penziji
 Prof. dr sc. med. **Vesna Begović-Kuprešanin**
 Doc. dr sc. med. **Suzana Bojić**
 Prof. dr sc. med. **Snežana Cerović**
 Akademik **Miodrag Čolić**, brigadni general u penziji
 Prof. dr sc. stom. **Dragana Daković**
 Prof. dr sc. pharm. **Silva Dobrić**, u penziji
 Prof. dr sc. med. **Viktoria Dragojević Simić**
 Prof. dr sc. med. **Boban Đorđević**, pukovnik
 Prof. dr sc. med. **Vladimir Jakovljević**
 Prof. dr sc. med. **Marija Jevtić**
 Prof. dr sc. med. **Igor Končar**
 Prof. dr sc. med. **Olivera Kontić-Vučinić**
 Dr sc. med. **Branko Košević**, pukovnik
 Prof. dr sc. med. **Boško Milev**
 Prof. dr sc. med. **Dragana Miljić**
 Prof. dr sc. stom. **Raša Mladenović**
 Prof. dr sc. med. **Dejan Orlić**
 Akademik **Miodrag Ostojić**, u penziji
 Prof. dr sc. med. **Aleksandar Perić**, potpukovnik
 Prof. dr sc. med. **Milan Petronijević**, pukovnik
 Doc. dr sc. med. **Dejan Pilčević**
 Akademik **Đorđe Radak**, u penziji
 Prof. dr sc. med. **Nemanja Rančić**
 Prof. dr sc. med. **Dušica Stamenković**
 Prof. dr sc. med. **Zvezdana Stojanović**
 Doc. dr sc. med. **Aleksandra Vukomanović**
 Prof. dr sc. med. **Miroslav Vukosavljević**, pukovnik u penziji

Tehnički sekretar i glavni menadžer časopisa

Dr sc. Aleksandra Gogić

REDAKCIJA

Stručna redakcija: Mast. biol. Gorica Gavrilović,
 Prim. dr Snežana R. Janković

Jezički redaktor: Mila Karavidić

Tehnički urednik: Dragana Milanović

Korektor: Jovana Zelenović

Kompjutersko-grafička obrada: Vesna Totić, Jelena Vasilj

ISSN 0042-8450
 eISSN 2406-0720
 Open Access
 (CC BY-SA)

Adresa redakcije: Univerzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Centar za medicinske naučne informacije, Crnotravska 17, 11 040 Beograd, Srbija. Informacije o preplati (tel.): +381 11 3608 997. E-mail (redakcija): vsp@vma.mod.gov.rs

Radove objavljene u „Vojnosanitetskom pregledu“ indeksiraju: Science Citation Index Expanded (SCIE), Journal Citation Reports/Science Edition, SCOPUS, Excerpta Medica (EMBASE), Google Scholar, EBSCO, Biomedicina Serbica, Srpski citatni indeks (SCIndeks), DOAJ. Sadržaje objavljaju Giornale di Medicine Militare i Revista de Medicina Militara. Prikaze originalnih radova i izvoda iz sadržaja objavljuje International Review of the Armed Forces Medical Services.

Časopis izlazi dvanaest puta godišnje. Preplate: Žiro račun br. 840-19540845-28, poziv na broj 122742313338117. Za preplatu iz inostranstva obratiti se službi preplate na tel. +381 11 3608 997. Godišnja preplata: 5 000 dinara za građane Srbije, 10 000 dinara za ustanove iz Srbije i 150 € za preplatnike iz inostranstva. Kopiju uplatnice dostaviti na gornju adresu.

CONTENTS / SADRŽAJ

EDITORIAL / UVODNIK

Dragana Vučević

Vojnosanitetski pregled in 2026 – new challenges, same dreams

Vojnosanitetski pregled u 2026 – novi izazovi, isti snovi.....

5

GENERAL REVIEW / OPŠTI PREGLED

Milena Todorović Balint, Marija Vraneš, Mirjana Pavlović, Olivera Šerbić, Andrej Pešić, Aleksandar Lazović, Bela Balint

Stem cell transplantation – an overview of clinic-based data and practice in the era of new drugs

Transplantacija matičnih ćelija – pregled podataka iz kliničke prakse u eri novih lekova

10

ORIGINAL ARTICLES / ORIGINALNI RADOVI

Miloš Lučić, Igor Djan, Olivera Šveljo, Silvija Lučić, Olivera Ivanov, Mladen Bjelan, Dušan Ilić

Multiparametric structural imaging biomarkers of early white matter microstructural changes during and after glioblastoma chemoradiotherapy: diffusion tensor imaging and diffusion kurtosis imaging

Multiparametrijski strukturni slikovni biomarkeri ranih promena mikrostrukture bele mase tokom i nakon hemioradioterapije glioblastoma: difuziono tenzorsko snimanje i difuziono snimanje kurtoze

21

Tijana Azaševac, Gordana Stražmešter Majstorović, Bojana Ljubičić, Vladimir Djurović, Milica Knežević, Mira Marković

Comparison of antimicrobial and thrombolytic central venous catheter lock solutions in preventing catheter-related complications in hemodialysis: a randomized controlled trial

Poređenje antimikrobnih i trombolitičkih rastvora za zatvaranje centralnih venskih katetera u prevenciji komplikacija povezanih sa kateterima kod bolesnika na hemodializu: randomizovano kontrolisano ispitivanje

31

Ibrahim Tevfik Gulsen, Tansu Cimen

Possible relationship between blood groups and impacted lower third molars categorized according to Pell and Gregory and Winter classifications

Moguća povezanost krvnih grupa i impaktiranih donjih trećih molara kategorisanih prema Pell i Gregory i Winter klasifikacijama.....

39

İrfan Yükkaya, Uğur Aydin, Oğuz Burhan Çetinkaya, Emre Çulha

Fracture resistance of five intra-orifice barriers in endodontically treated mandibular premolars: an *in vitro* study

Otpornost na prelom pet različitih barijera koje se postavljaju na ulazu u kanal endodontski lečenih premolara u donjoj vilici: *in vitro* studija.....

49

BOOK REVIEW / PRIKAZ KNJIGE

Silva Dobrić

Pharmacokinetics and pharmacogenetics – principles, applications, and challenges

Farmakokinetika i farmakogenetika – principi, primene i izazovi.....

56

World Neglected Tropical Diseases (NTD) Day is observed annually on 30 January. More than one billion people worldwide live with NTDs. On the occasion of World NTD Day, the World Health Organization invites all communities to unite, act, and eliminate these diseases. This year's theme, "Unite, Act, Eliminate," highlights the importance of global cooperation among health institutions and international organizations in the fight against NTDs and their complete elimination.

Svetski dan zanemarenih tropskih bolesti (ZTB) obeležava se svake godine 30. januara. Više od jedne milijarde ljudi širom sveta živi sa ZTB. Povodom Svetskog dana ZTB, Svetska zdravstvena organizacija poziva sve zajednice da se ujedine, deluju i iskorene ove bolesti. Ovogodišnja tema „Ujedinimo se, delujmo, eliminišimo“ ističe važnost globalne saradnje zdravstvenih institucija i međunarodnih organizacija u borbi protiv ZTB i njihovo potpunoj eliminaciji.

Vojnosanitetski pregled in 2026 – new challenges, same dreams

Vojnosanitetski pregled u 2026 – novi izazovi, isti snovi

Dragana Vučević

University of Defence, Faculty of Medicine of the Military Medical Academy,
Center for Medical Scientific Information, Belgrade, Serbia

In line with long-established practice, the editorial published in the first issue of each volume of *Vojnosanitetski pregled* (VSP) provides a comprehensive overview of the activities of the Editorial Board (EB) and Editorial Office (EO) over the past year and outlines plans for the year ahead. The analysis includes both manuscripts submitted in 2025 and articles published during the same period.

Consistent with previous years, the manuscripts submitted in 2025 covered a broad range of research topics in clinical and experimental medicine, dentistry, and pharmacy. In 2025, a total of 277 manuscripts were received, slightly fewer than in 2024 (15 manuscripts fewer). Analyzing the period from 2020 to 2025, excluding 2023 when 226 manuscripts were submitted, it can be seen that the number of manuscripts received in 2025 remains comparable to the levels observed in 2020, 2021, and 2022, with 280, 278, and 265 manuscripts, respectively. As expected, Original Articles represented the largest category of

submissions (205 or 74.0%), followed by Case Reports (32 or 11.6%) (Table 1).

The analysis of authors' institutional affiliations showed that 88.8% of submissions came from civilian health and academic institutions, whereas 11.2% were affiliated with the University of Defence in Belgrade, Serbia. Among the manuscripts submitted by civilian institutions, the proportion involving international authors increased from 46.5% in 2024 to 62.9% in 2025. We are particularly encouraged by the participation of international authors, with submissions coming from 10 countries across both our region and more distant parts of the world: Bosnia and Herzegovina, Bulgaria, China, India, Iran, Montenegro, Pakistan, Saudi Arabia, Slovenia, and Turkey (listed in alphabetical order). We sincerely appreciate the trust these authors have placed in our journal, with particular acknowledgment of submissions from China and Turkey, which accounted for the largest proportions of international

Table 1
Categories and the number of manuscripts submitted to the *Vojnosanitetski Pregled* in 2025

Category	n (%)
Original Article	205 (74.0)
Case Report	32 (11.6)
Current Topic	17 (6.1)
General Review	5 (1.8)
History of Medicine	5 (1.8)
Short Communication	5 (1.8)
Meta-analysis	4 (1.4)
Editorial	2 (0.7)
Letter to the Editor	1 (0.4)
Scientific Meeting Report	1 (0.4)
Total	277 (100)

contributions (China 30.6%, Turkey 12.9%). What is particularly encouraging is that the proportion of papers submitted by authors from abroad has shown a steady increase over the past few years, reflecting the growing interest of the international scientific community in our journal. We hope this trend will continue in the future, contributing further to the international visibility and recognition of VSP.

During the pre-review stage, 55.5% of manuscripts were declined, while 44.5% progressed to the peer-review process. The proportion of manuscripts rejected at the pre-review stage increased slightly compared with 49.1% in 2024, reflecting the application of more rigorous editorial criteria. Among those that underwent the peer-review process, up to December 31, 2025, 44.8% were accepted for publication after the required revisions, and 21.0% were rejected. The remaining 34.2% are still under review. These percentages are consistent with those reported in the previous year.

The total number of articles undergoing the DOI assignment process in 2025 (including those submitted prior to 2025) was 84, slightly lower than in 2024 (92 articles). Extended review periods, longer than desired, directly affected the time to decision on manuscript status (accepted or rejected) and contributed to the lower number of articles published in 2025. The average time from submission to acceptance (after two positive reviews) or rejection (after two negative reviews) for manuscripts submitted during 2025 was 86 and 113 days, respectively. The average time to receive a DOI for manuscripts submitted and accepted for publication during 2025 was 137 days.

One factor contributing to the lower number of manuscripts entering the DOI assignment process and the reduced number of publications in 2025 was the withdrawal of manuscripts by authors after receiving conditionally positive or positive peer reviews. This behavior likely reflects attempts to submit manuscripts, whose quality was substantially improved by the suggestions of the VSP reviewers, to journals with a higher impact factor (IF). Addressing this issue will be a priority for the EB to ensure that VSP's peer-review resources are used to the fullest benefit of VSP.

In 2025, a total of 92 articles were published, including one Scientific Meeting Report (Table 2), slightly fewer than the 102 articles published in 2024. One of the factors contributing to this decrease may be a higher rejection rate at the pre-review stage, as well as the previously mentioned phenomenon of manuscript withdrawal after authors received conditionally positive or positive peer reviews. During 2025, a total of eight manuscripts were withdrawn at this stage.

As in previous years, the majority of published articles fell into the categories of Original Articles (66 or 71.7%) and Case Reports (15 or 16.3%), with numbers almost identical to those in 2024.

Considering the authors' affiliations, an analysis of the published articles showed that the majority of authors were from civilian institutions, both domestic and international (81.6%), of which approximately 36.2% were from abroad, followed by authors from the University of Defence in Belgrade (18.0%). These proportions were roughly the same as in 2024. However, the number of published papers by foreign authors increased by 13.7% compared to 2024. This increase was expected, reflecting both the higher influx of submissions from international authors and the greater number of their manuscripts entering the peer-review process.

We sincerely thank all authors who have chosen VSP to present their research findings, with special acknowledgment to our international contributors. Your work is essential in promoting the journal's visibility and impact. We look forward to your continued contributions in further strengthening VSP's role within the scientific community.

According to the Center for Evaluation in Education and Science database, which provides full-text access to articles published in VSP, a total of 38,147 full-text downloads were recorded in 2025, of which 2,036 corresponded to articles published in 2025. The article with the highest number of downloads (86) was *Association between C-reactive protein-albumin-lymphocyte (CALLY) index and cerebral edema in acute ischemic stroke patients* (DOI: <https://doi.org/10.2298/VSP240625086O>).

According to the EBSCO database, VSP articles were accessed over 54,370 times in 2025 by 2,003 different universities, colleges, libraries, and other

Table 2
Categories and the number of articles published in the *Vojnosanitetski Pregled* in 2025

Category	n (%)
Original Article	66 (71.7)
Case Report	15 (16.3)
History of Medicine	3 (3.3)
Meta-analysis	2 (2.2)
Editorial	2 (2.2)
General Review	1 (1.1)
Current Topic	1 (1.1)
Short Communication	1 (1.1)
Scientific Meeting Report	1 (1.1)
Total	92 (100)

institutions worldwide. Pukyong National University (South Korea) and Ajman University (United Arab Emirates) ranked first and second, with 7,406 and 5,833 downloads, respectively. Notably, the Max Planck Institute in Heidelberg (Germany), one of Europe's leading scientific institutions, increased its number of downloads from our journal from 1,475 in the previous year to 5,141 in 2025. VSP articles published in 2025 were downloaded 1,937 times, representing a twofold decrease compared with the previous year. The observed reduction may be explained, at least partially, by the smaller number of articles published in 2025. The article with the highest number of downloads (92) was *Deficits in naming and auditory comprehension of terms in individuals with vascular dementia* (DOI: <https://doi.org/10.2298/VSP240406081V>). As noted above, article downloads in 2025 were lower than in 2024, which is a cause for concern. Nevertheless, it is encouraging that VSP articles were read a total of 4,372 times, representing an increase of more than 440 compared with the previous year, when 3,930 reads were recorded, and provides strong motivation for further improvements in the journal's accessibility and visibility.

The IF of VSP for 2024 remained unchanged from the previous year (2023) at 0.2. As increasing the IF is one of the journal's key goals, the EB has continued to apply a rigorous selection process for manuscripts entering the review phase. The focus is on papers that, due to their quality and significance, can attract the attention of the scientific community and therefore have a high potential for citations. Achieving this goal requires the continuous and active engagement of all members of the EB. Equally important is the careful selection of reviewers who are experts in their respective fields and willing to dedicate the necessary time and expertise. As an encouraging sign that the EB is moving in the right direction, we note the increase in the 5-year IF from 0.2 to 0.3, reported in July 2025.

In 2025, the contributions of 222 reviewers (Table 3) were invaluable to our work, and we are deeply grateful to all of them. We would like to give special recognition to Professors Čvorović Ljiljana, Dedić Gordana, Đukanović Ljubica, Kezić Aleksandra, Lepić Milan, Mikić Dragan, Nožić Darko, Rasulić Lukas, Resan Mirko, Stanojević Ivan, Šuljagić Vesna, Tomic Aleksandar, and Vidaković Aleksandra (listed in alphabetical order), each of whom reviewed at least three manuscripts in 2025.

Table 3**Reviewers of the *Vojnosanitetski pregled* in 2025**

Abbasoglu Osman	Ćupurdija Vojislav	Gajić Selena	Jovanović Bogdan
Aleksandrić Srdjan		Gašić Jugoslav	Jovanović Milan
Aleksić Aleksandra	Damjanov Ivan	Golubović Jagoš	Jovanović Simić Jelena
Asmis Lars	Davidović Lazar	Grubović Rastvorčeva Rada	Jovanović Predrag
Atanasijević Igor	de Carvalho Dornelas	Guzina Golac Nataša	Jovanović Vanja
Babić Srdjan	Bruno	Horvat Olga	Jovičić Žikica
Babić Uroš	Dedić Gordana	Hosseini Rezvani	Jović Zoran
Bajčetić Milica	Demetriades Andreas	Mohammad	Kačar Aleksandra
Bajkin Branislav	Dimić Andreja	Hoveyan Julieta	Kareem Mohammed Ahmed
Baljošević Ivan	Dimitrijević Zorica	Ignjatović Mile	Karličić Vukoica
Bančević Vladimir	Dinčić Evica	Ilić Jugoslav	Kezić Aleksandra
Basta Nikolić Marijana	Dinić Miroslav	Ilić Tanja	Knežević-Ušaj Slavica
Baščarević Vladimir	Dragić Milorad	Ilić Tihomir	Kopitović Ivan
Biočanin Vladimir	Dragović Tamara	Ivanov Milan	Kostić Milena
Bižić Marta	Drobac Milan	Jahić Azra	Kostić Smiljana
Bodrožić Jelena	Djokić Jelena	Jakšić Vesna	Kovačević Božidar
Bojović Marko	Djordjević Dragan	Janković Slobodan	Kozomara Ružica
Bošković Aneta	Djordjević Olivera	Janković Srdja	Krasić Dragan
Brajušković Goran	Djukanović Ljubica	Janković Veličković Ljubinka	Krejović Sanja
Brković Voin	Djukanović Marija	Jauković Ljiljana	Kuzmanović Miloš
Bubalo Marija	Djukić Slobodanka	Jianu Dragos Catalin	Lance Marcus D.
Budić Ivana	Djurić Ivica	Jocić Miodrag	Lazarević Simović Snežana
	Djurić Predrag	Jotić Ana	Lepić Milan
Cancrini Fabiana	Eri Živka	Jovančević Ljiljana	Liu Qiquan
Cvetković Gordana	Filipović Nenad	Jovanikić Olivera	Lučić Miloš
Čanadanović Vladimir	Filipović Tamara	Jovanović Ankica	Lukić Milica
Čvorović Ljiljana			

Table 3 (continued)

Mandić Rajčević Stefan	Nastasović Tijana	Radulović Nataša	Stojimirović Biljana
Manojlović Nebojša	Nešković Mihailo	Rajević Milica	Stojković Goran
Marić Nebojša	Nešković Vojislava	Rakić Mia	Stožić Mirjana
Marinković Dejan	Nikolić Aleksandra	Ramdaniati Sri	
Marjanović Ivan	Nikolić Jakoba Nataša	Ranković Aleksandar	
Marković Aleksa	Nikolić Ratko Jelena	Rasulić Lukas	Šarac Sanja
Matić Milan	Nikolić Ljubiša	Rašić Dejan	Šuljagić Vesna
Matijašević Jovan	Ninković Milica	Rašković Aleksandar	Šurbatović Maja
Matijević Stevo	Novaković Nenad	Ratinac Miloš	Tamamyan Gevorg
Mavija Milka	Novković Mirjana	Resan Mirko	Tanasković Slobodan
Mijajlović Milija	Nožić Darko	Ristić Andjelka	Tepšić Ostojić Vesna
Mijatović Jovin Vesna	Obradović Radmila	Ristivojević Bojan	Tiodorović Danica
Mikić Dragan	Obradović Slobodan	Roganović Branka	Todorović Ljubomir
Milanović Borko		Rondović Goran	Todorović Zoran
Milenković Branislava	Paripović Dušan	Samardžić Janko	Tomić Aleksandar
Milijašević Boris	Pasternak Janko	Savić Slobodan	Trbojević Stanković Jasna
Milivojević Vladimir	Pavić Ognjen	Slović Živana	Trifunović Miroljub
Milojević Andjela	Pavličević Goran	Sotirović Jelena	
Milosavljević Marko	Pavlović Sonja	Sovtić Aleksandar	Vasović Dolika
Milosavljević Miloš	Pejčić Ana	Spasojević Brankica	Veličković Radovanović Radmila
Milošević Nikola	Petković Djurić Danijela	Spiroski Dejan	Vezmar Kovačević Sandra
Milovanović Dragan	Petković Stojan	Srzentić Snežana	Vidaković Aleksandra
Milovanović Zagorka	Petronijević Nataša	Stamenković Dragoslav	Vlahović Dmitar
Miljić Predrag	Petrović Vladimir	Stanić Tišma Dragana	Vujašković Mirjana
Minić Predrag	Pham Khanh Trinh Quoc	Stankov Karmen	Vuković Jelena
Mirković Ljiljana	Polovina Snežana	Stanković Ivan	Zdravković Nebojša
Mirković Nikola	Poulia Kalliopi Anna	Stanković Nebojša	Zeba Snježana
Mirošević Nikica	Radević Svetlana	Stanković Nikola	Zlatanović Dragan
Mišović Miroslav	Radić Milica	Stanojević Ivan	Zlatanović Petar
Mladenović Zorica	Radoičić Dragan	Stepanović Aleksandar	
Momčilović Antić Ana	Radosavljević Aleksandra	Stepić Nenad	Živković Slavoljub
Nale Djordje		Stevanović Dejan	

Considering VSP's current IF and the fact that authors naturally tend to submit their most significant research to higher-impact journals, it is understandable that VSP may not always be their first choice. Therefore, it is the responsibility of the EB to encourage and motivate domestic authors to submit their most important research to VSP, helping to sustain and strengthen the journal's position on the SCI list. Members of the EB can, by recommending experts in relevant fields who respect the deadlines for manuscript evaluation, contribute to shortening the time to a final decision on manuscripts and also increase authors' interest in VSP. We would like to warmly thank all editors who, during 2025, made extra efforts to bring such experts onto VSP's reviewer team.

During 2025, the EO faced organizational challenges, as a result of which the preparation of manuscripts that, following two positive reviews, were accepted for publication and entered the DOI assignment process was slower than planned. Nevertheless, the planned publication schedule was fully maintained, and all 12 issues of the journal were published on a monthly basis. I would like to express my sincere appreciation to the members of the EO,

whose dedication and professional commitment ensured the timely publication of each issue.

We also gratefully acknowledge the continued support of the Publisher's Advisory Board of VSP, whose willingness to assist the editorial team and the EO has been of great importance.

Entering the new year provides an opportunity to express our sincere and heartfelt gratitude to all our collaborators who, although not members of the EB or the EO, consistently support the journal through their professionalism, dedication, and long-standing commitment. We extend our special thanks to Ms. Aleksandra Kužet (National Library of Serbia, Department of Scientific Information) and Mr. Nebojša Krstić (Neolibris DOO) for their invaluable and ongoing contributions to the journal. Their support in 2025, as well as throughout previous years, has been an important source of stability, reliability, and reassurance for us.

Last year, we were not able to accomplish everything we had planned. Therefore, we see 2026 as a new opportunity to continue what we have started. Our established plans continue to guide us, while our ultimate

goal remains the improvement of the journal's quality, relevance, and reputation within the scientific community.

At the beginning of the new year, we wish all authors, readers, reviewers, editors, and collaborators good health,

personal happiness, and professional success. We look forward to continuing our collaboration and hope that 2026 will bring even greater achievements and satisfaction for all of us.

Stem cell transplantation – an overview of clinic-based data and practice in the era of new drugs

Transplantacija matičnih ćelija – pregled podataka iz kliničke prakse u eri novih lekova

Milena Todorović Balint^{*†}, Marija Vraneš[‡], Mirjana Pavlović[§], Olivera Šerbić^{||},
Andrej Pešić^{*}, Aleksandar Lazović[¶], Bela Balint^{**††††}

^{*}University Clinical Center of Serbia, Clinic for Hematology, Belgrade, Serbia;

[†]University of Belgrade, Faculty of Medicine, Belgrade, Serbia; University Clinical Center Kragujevac, [‡]Blood Bank Department, [¶]Department of Surgery, Kragujevac, Serbia;

[§]Florida Atlantic University, Department of Electrical Engineering and Computer Science, Boca Raton, USA; Institute for Mother and Child Health Care of Serbia “Dr. Vukan Čupić”, ^{||}Blood Transfusion Department, Belgrade, Serbia;

^{**}Serbian Academy of Sciences and Arts, Department of Medical Sciences, Belgrade, Serbia; ^{††}University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; ^{†††}Hungarian Academy of Sciences, Department of Medical Sciences, Budapest, Hungary

Abstract

Hematopoietic stem cell transplantation (HSCT) has been the therapy of choice for treating some hematologic malignancies and selected non-malignant disorders for decades. With the introduction of novel immunotherapeutic and cell-mediated approaches, the role of autologous HSCT (auto-HSCT) and allogeneic HSCT (allo-HSCT) should be redefined. Auto-HSCT remains the standard of treatment for multiple myeloma, Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. The use of novel agents, including proteasome inhibitors, immunomodulatory drugs, monoclonal and bispecific antibodies, enhances the intensity and efficacy of the therapeutic response and opens debate on an optimized timing for HSCT. Allo-HSCT represents the most effective type of adoptive immunotherapy, ensuring complete and long-term hematopoietic reconstitution, often accompanied by the graft-versus-leukemia effect. It remains the main curative treatment for acute leukemias, high-risk myelodysplastic and myeloproliferative syndromes, and severe aplastic anemia. Improvements in stem

cell (SC) donor selection, *ex vivo* manipulations of harvested cells, and graft engineering with superior immune monitoring have broadened and expanded their applicability, while improving safety and clinical outcome. Despite rapid progress in cellular and other immunotherapies, HSCT continues to play an essential role in the treatment of numerous hematologic disorders. A combination of HSCT with novel drugs and other immunotherapies offers the potential for personalized and safer treatment with long-term positive clinical outcomes, ensuring that HSCT remains a highly relevant method in modern medicine. The aim of this review was to summarize current biological concepts of SCs, as well as important advances in the rapidly developing fields of SC research, and to determine the place and efficacy of HSCT nowadays, in the era of new therapeutic approaches and agents.

Keywords:

allografts; cryopreservation; hematologic diseases; immunotherapy; multiple myeloma; stem cells; transplantation, autologous.

Apstrakt

Transplantacija hematopoetskih matičnih ćelija (*hematopoietic stem cell transplantation* – HSCT) već decenijama predstavlja terapiju izbora u lečenju pojedinih hematoloških maligniteta i nekih nemalignih poremećaja. Uvođenjem novih imunoterapijskih i ćelijama-posredovanih pristupa trebalo bi da bude redefinisana uloga autologne HSCT (auto-HSCT) i

alogene HSCT (alo-HSCT). Auto-HSCT i dalje ostaje standard u lečenju multiplog mijeloma, Hočkinovog limfoma i ne-Hočkinovog limfoma. Primena novih medikamenata, uključujući inhibitory proteazoma, imunomodulacijske lekove, monoklonska i bispecifična antitela, povećava intenzitet i efikasnost terapijskog odgovora na HSCT i otvara raspravu o optimalnom vremenu za primenu HSCT. Alo-HSCT predstavlja

najefikasniji oblik adoptivne imunoterapije, obezbeđujući kompletnu i dugotrajanu hematopoetsku rekonstituciju, neretko praćenu efektom "kalem protiv leukemije" (*graft-versus-leukemia*). Ona ostaje primarni kurativni vid lečenja akutnih leukemija, visoko-rizičnih mijelodisplastičnih i mijeloproliferativnih sindroma, kao i teške aplastične anemije. Poboljšanja u izboru donora matičnih ćelija (*stem cell* – SC), *ex vivo* manipulaciji prikupljenih ćelija, kao i inženjeringu grafta uz napredni imunski monitoring, proširila su i unapredila primenljivost ove terapije uz istovremeno povećanje bezbednosti i poboljšanje kliničkog ishoda. Uprkos brzom napretku u oblasti ćelijama posredovane i drugim agensima posredovane imunoterapije, HSCT i dalje ima ključnu ulogu u lečenju pojedinih hematoloških

poremećaja. Kombinacija HSCT sa novim lekovima i drugim vidovima imunoterapije pruža mogućnost personalizovanog i bezbednijeg lečenja sa dugotrajnim povoljnim kliničkim ishodima, i obezbeđuje da HSCT ostane visoko relevantan metod u savremenoj medicini. Cilj ovog rada bio je da se sumiraju trenutni biološki koncepti SC, kao i bitna dostignuća na istraživačkim poljima u oblasti SC koja se brzo razvijaju, i da se odredi mesto i efikasnost HSCT danas, u eri novih terapijskih pristupa i agensija.

Ključne reči:

allograft; kriokonzervacija; hematološke bolesti; imunoterapija; multipli mijelom; ćelije, matične; transplantacija, autologna.

Introduction

Stem cells (SCs) are defined as cells with a unique ability for self-renewal, high proliferative capacity, and the potential to differentiate into mature blood or somatic cells, such as osteocytes, chondrocytes, hepatocytes, myocytes, cardiomyocytes, and even endothelial cells. The increasing clinical use of various cell-mediated therapeutic methods over the past decades has resulted in a growing demand for both hematopoietic SCs (HSCs) and the need to adapt and improve operating procedures to minimize cellular injury during collection, purification, and cryopreservation. A critical aspect of cell harvesting is obtaining improved SC yield, purity, and viability. The objective of fundamental and clinical cryoinvestigations is to decrease cellular damage during freeze/thaw procedures (cryoinjury). Although SC clinical use has become routine, a large number of questions related to optimal cell harvesting protocols, *ex vivo* processing, and cryopreservation remain unresolved¹⁻³.

Since the initial treatments with HSC transplants (HSCT), considerable changes and improvements have been made in the kind of medications used for peritransplant treatment of patients. In addition, new approaches and agents/drugs have recently been introduced for the therapy of various hematological diseases and disorders. For instance, the use of autologous HSCT (auto-HSCT) has long been a standard method for transplant-eligible patients. However, its status in treatment should be redefined due to the introduction of agents such as proteasome inhibitors, immunomodulatory drugs, monoclonal or bispecific antibodies (Abs), and chimeric antigen receptor T (CAR-T) cellular therapies²⁻⁶.

The purpose of this paper is to recapitulate data in the field of conceptual aspects of SCs harvesting and extracorporeal "graft-engineering" systems adapted to specific cell categories. Moreover, some practical aspects of the place and justification of HSCTs in the era of new drugs and other biologically active agents will be briefly reviewed.

Stem cells – biology and *ex vivo* manipulations

The biology of various divisions of SCs is a fascinating and constantly expanding field of biomedicine that examines

and describes both the fundamental properties of these cells, as well as the possibility and effectiveness of their therapeutic use in cell transplant and regenerative medicine¹⁻⁵. There are different types and sources of SCs: embryonic SCs (ESCs – concerning their therapeutic use, ongoing regulations/directions are required), adult SCs (ASCs) or tissue-specific SCs (e.g., HSCs, and mesenchymal SCs – MSCs, etc.), as well as induced pluripotent SCs (iPSCs) – produced through "HSCs reprogramming" of somatic cells back into a pluri(multi)potent stage/phase. MSCs are important due to immunomodulation competence and the ability to differentiate into numerous cell types of mesodermal origin (tissue repair)^{2, 6-14}.

Cytopoiesis is a continuous biological process of producing a large number of "daughter cells" from the compartment of a single or solitary "parent" SC. The original explanation and description of SCs – that they are exclusive, high-class cells at an early developing stage, characterized by an almost limitless self-renewal ability (long-term possibility to create identical copies of themselves), high proliferative capacity, and extensive potential for differentiation into specialized and ever more mature cells of different lineages in the body – remains unsurpassed²⁻¹⁰.

Thus, SCs are the "key" cells in the body functioning as special "antecedent" cells or precursors that precede (hemo)biological events or cellular evolution, producing a large quantity (proliferation) of mature (differentiation) cells within tissues, while simultaneously retaining the ability to reproduce themselves (self-renewal). This event is precisely regulated by intrinsic genetic/molecular pathways, which can be influenced by external signals from the extracellular matrix (ECM), as well as by the microenvironment provided by stromal cells⁶⁻¹⁴.

Owing to the phenomenon of self-renewal, SCs maintain the constancy of their own population under steady-state conditions, but also in conditions when that physiological balance is disturbed – up to a certain limit. Through differentiation, primitive SCs create a "wide-ranging" series of less primitive cells: firstly, different pluri(multi)potent SCs with a somewhat decreased self-renewal ability, and then cells determined for more or just one cell lineage, which have a very moderate or no potential for self-renewal. To further clarify SCs, an "up-to-date" characteristic has been added – cell plas-

ticity (more precisely, intersystemic plasticity)—which is particularly important for their clinical application in regenerative medicine^{2,7-16}.

Concisely, the most primitive SCs give rise to repopulation of the recipient's bone marrow (BM)—engraftment with the following complete and long-term reconstitution of hematopoiesis. They are also capable of “colonizing” targeted/damaged tissues (“homing”)—by following “trans-differentiation” into the cell lineages of host organ, including collateral vessel formation (“neovascularization”)^{2,17-22}.

The use of HSCT is a highly specialized and often life-saving curative procedure in which a patient receives auto-HSCs or allogeneic HSCs (allo-HSCs) following high-dose chemotherapy (HDCT), and less frequently chemoradiotherapy, in order to replace damaged BM with healthy cells. In an autologous setting (auto-HSCT), a patient receives their own HSCs following HDCT. Allo-HSCT is a therapeutic method of replacing the patient's hematopoietic tissue with donor “blood-forming” cells/tissue, i.e., HSCs. It represents the concept of applying chemotherapy/radiotherapy with immunosuppressive treatment, after which donor HSCs are applied to the patient with high-risk hemato-malignancies²⁻⁶.

In practice, HSCT represents a curative method of treating malignant disorders, such as Hodgkin's lymphoma (HL) and non-HL (NHL), multiple myeloma (MM), acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), myelodysplastic syndrome, and myeloproliferative neoplasms (MPN)^{6,23-34}. Transplants are also indicated for the treatment of some non-malignant diseases and immune-mediated disorders, such as severe aplastic anemia and multiple sclerosis (MS)^{2,35-41}.

Stem cell collection

In practice, SCs can be collected by multiple aspirations from BM, by harvesting mononuclear cells (MNCs) from peripheral blood (PB) after a mobilizing regimen, or by isolation from umbilical cord blood. Typically, the use of BM- or PB-derived grafts is a standard method in adult patients, whereas umbilical cord blood transplants have shown promising results, particularly in the pediatric setting⁴¹⁻⁴⁵.

Historically, BM was the primary source of SCs for transplantation in both experimental and clinical settings, obtained through multiple aspirations from the posterior and anterior iliac crests and, rarely, from the sternum. Nowadays, SCs are predominantly harvested from PB, accounting for ≥ 80% of HSCTs, after a mobilization regimen, using chemotherapy and/or granulocyte colony-stimulating factor (G-CSF), seldom in combination with plerixafor (mozobil)^{2,6,24,26,42}. The use of G-CSF plus plerixafor increases the ratio of patients who respond to the cell mobilization (“good-mobilizers”—approximately 95% of cell harvestings) and enables the collection of enough cells for auto-HSCT (including patients with “mobilization-failure” or “poor-responders”)²⁴.

Determining the best possible time for SC-harvesting from PB is the most critical event. For allogeneic donors, the first apheresis is regularly on the fifth day of G-CSF applica-

tion. However, deciding on the optimal timing for autologous collection from patients who are primed by chemotherapy plus G-CSF is more complex and challenging. The circulating CD34⁺ cells count evidently correlates with optimized harvesting time and SC quantity [target CD34⁺ yield ≥ 2–5 × 10⁶ cells/kg of patient's body mass (bm) in the harvest]. Nowadays, it is accepted that optimal timing to begin cell collection is when the number of CD34⁺ cells is ≥ 20–40/µL of the patient's PB^{3-6,24,41}.

Our results confirmed the high-level efficacy of the large volume leukapheresis (LVL). For the approximately 90% of patients using one LVL, the mean CD34⁺ yield was 8.4 × 10⁶ cells/kg bm (allo-HSCT) and 5.5 × 10⁶ cells/kg bm (auto-HSCT), respectively^{2-4,44}. Finally, in the group of patients requiring plerixafor, the use of the G-CSF plus plerixafor protocol reduced the rate of “poor-responders” and provided an adequate cell dose (mean CD34⁺ cell yield was 7.6 × 10⁶ cells/kg bm – to be able to perform a tandem auto-HSCT as well) with a superior therapeutic potential and safety profile of treatment²⁴.

Stem cell cryopreservation

The saving/banking of living cells, such as SCs, in a frozen state (cryopreservation) is required when cells appear to be biologically, chemically, or thermally unstable after liquid-state storage. Its key aim is to obtain better-quality cell count and viability recovery after thawing. Although SC-cryopreservation is nowadays a standard technique, recent cryoinvestigations recommend that freezing strategies be revised to minimize cryoinjuries and maximize cell recovery. Cryoinjuries result from the extensive cellular dehydration or “solution effect” and/or massive intracellular ice crystallization or “mechanical damage”^{2,4,46-50}.

The use of programmed or controlled-rate freezing, which ensures a precisely defined cooling rate, is a time-consuming process that requires high-level technical knowledge. The choice of an optimal freezing rate – specific for each cell type and cryobiosystem – should be determined. In practice, the cooling rate should be sufficiently rapid to prevent “solution effect”, yet slow enough to allow possible water efflux from the cells and following “mechanical damage”^{2,6,50}. Uncontrolled-rate technique (“dump-freezing”) is less costly because it does not require a complex programmed freezing device. However, it has been confirmed that controlled-rate freezing systems are superior, as they provide better quantitative, morphological, ultrastructural, and functional cell recovery during cryopreservation and following thawing⁴⁵⁻⁵⁰. In addition, satisfactory numerical and functional recovery of cryopreserved SCs is achieved only when an appropriate cryoprotectant – most commonly dimethyl sulfoxide (DMSO) for SC cryopreservation—is added to the cryobiosystem at an optimal final concentration. Cryoprotectants express protective effects and consequences by decreasing cellular thermal damage, i.e., by reducing cell dehydration and intracellular ice crystallization^{2,50}.

As previously demonstrated in our cryoinvestigations using a controlled-rate freezing system, the recovery of

committed hematopoietic progenitors – colony-forming unit (CFU)-spleen (CFU-Sd12) and CFU – granulocyte-macrophage (CFU-GM) – was improved in the presence of 5% DMSO⁴⁶. On the other hand, we confirmed that the recovery of very primitive pluripotent SCs with marrow repopulating ability was better when 10% DMSO was used. Thus, our cryoinvestigation suggested various cryobiological characteristics and requirements of marrow repopulating ability cells compared with committed progenitors⁴⁶. Finally, our early clinical studies showed that therapeutic use of controlled-rate cryopreserved SCs (10% DMSO) in the therapy of hemato-oncological patients resulted in high cell recovery and rapid post-transplant hematopoietic reconstitution, with neutrophil recovery occurring on average by day 11 and platelet recovery by day 13^{2,24,44}.

The most frequent indications for auto-HSCT in hematology

As previously pointed out, auto-HSCT is a common procedure in hematology, primarily used to treat certain blood cancers. The main purpose of auto-HSCT is to “rescue” the patient’s BM after damage caused by HDCT. Although HDCT is highly effective in eradicating malignant cells, it also destroys the healthy, “blood-forming” SCs, i.e., HSCs, in the BM²⁻⁶.

In hematology, the most common indications for auto-HSCT are MM, HL, and NHL. In the treatment of patients with MM, auto-HSCT is often a standard part of the initial treatment for eligible patients, aiming to consolidate the initial therapeutic response. Conditioning regimen with standard high-dose melphalan (HD-Mel) is used to achieve a deep and long-lasting remission⁵¹. Based on the most recent data from the European Society for Blood and Marrow Transplantation (EBMT), MM is the most frequent indication for auto-HSCT. According to the 2023 EBMT report on HSCT and cellular therapies, plasma cell disorders, which primarily consist of MM, accounted for 58.2% of all auto-HSCT performed in Europe in 2023. The other main indications for autologous transplants in 2023 were lymphomas (32.2%) and solid tumors (6.6%). Among lymphomas are HL and NHL⁵². Additionally, auto-HSCc is a standard treatment for HL patients who have relapsed or whose disease is refractory to initial chemotherapy (relapsed/refractory – r/r HL), which accounts for approximately 40% of initial patients with this diagnosis⁵³. Finally, auto-HSCT is frequently used as salvage therapy for patients with r/r NHL, or can also be used as consolidative treatment for high-risk patients, such as those with mantle cell lymphoma (MCL) or anaplastic large cell (ALC) lymphoma⁵⁴.

The role of auto-HSCT in MM, HL, and NHL in the era of new drugs and cellular therapies

Multiple myeloma

The field of MM treatment is constantly evolving, with the introduction of new drugs significantly impacting the role

of auto-HSCT. While auto-HSCT has long been a standard of care for transplant-eligible patients (up to 65–70 years), its place in the treatment paradigm is being redefined by novel agents such as proteasome inhibitors, immunomodulatory drugs, monoclonal Abs, bispecific Abs, and CAR-T cellular therapies⁵⁵.

Despite all novel approaches in MM, an auto-HSCT remains a standard of care for many patients, since it is highly effective, particularly for younger and fit patients with newly diagnosed MM⁵⁶. It is well known that it can provide deep and durable responses, which translate to longer progression-free survival. Some studies have even shown an overall survival (OS) benefit⁵⁷.

In the course of first-line treatment, auto-HSCT is often performed after a period of induction therapy. Initial treatment, which includes triple or, in high-risk patients, quadruplet combinations of new drugs, optimizes initial therapeutic response before the transplant procedure and changes the paradigm “when” and “how” to perform an auto-HSCT in MM patients.

There are a few pillars in the patient journey from diagnosis to possible optimal treatment response, and they are described in the passages that follow.

Improved induction with novel agents in combined regimens, including proteasome inhibitors (e.g., bortezomib, carfilzomib), immunomodulatory drugs (e.g., lenalidomide – LEN), and monoclonal Ab (e.g., daratumumab), is used before auto-HSCT. These drugs achieve a deeper initial response before the transplant.

The role of HD-Mel (200 mg/m²) with possible addition of a new drug in the conditioning regimen before application of autologous HSCs in a single or tandem setting in high-risk patient⁵⁸.

New drugs are also used after auto-HSCT for maintenance therapy to prolong remission. This includes drugs like the immunomodulatory drug LEN, and ongoing research is exploring other options to maintain the depth of the post-transplant response⁵⁹.

The debate on upfront vs. delayed auto-HSCT: the excellent results achieved with novel drug combinations have led to a discussion regarding whether auto-HSCT should be performed right after induction therapy (upfront) or delayed until disease relapse. While some trials have shown a benefit to upfront auto-HSCT in terms of progression-free survival, the OS benefit is not always clear. This makes the decision highly personalized as part of an evidence-based approach in the patient’s specific case⁶⁰.

The use of new immunotherapies like CAR-T-cell therapy and bispecific Abs is emerging as a highly effective option, particularly for patients with r/r MM⁶¹. These therapies are currently being explored for earlier use in the treatment pathway and may further impact the role of auto-HSCT in the future⁶².

Hodgkin’s lymphoma

In the r/r HL, new drugs such as brentuximab vedotin (BV) and checkpoint inhibitors play a great role as novel

treatment options⁶³. Auto-HSCT exerts its principal benefit as consolidation therapy, particularly in achieving a second remission in chemosensitive r/r HL patients. The main purpose of auto-HSCT in these cases is to allow the administration of HDCT. The consolidation with BV after auto-HSCT in HL patients with high risk of relapse is the main achievement of this combined approach⁶⁴. After treatment failure with BV, other options in r/r HL are different checkpoint inhibitors like nivolumab, pembrolizumab, and ipilimumab⁶⁵. After relapse with all previously explained approaches in r/r HL, allo-HSCT could be the only reasonable treatment option. This type of transplant provides the additional benefit of creating a “new” immune system that may be able to recognize and fight any remaining lymphoma cells. However, it also carries a higher risk of complications, such as graft-versus-host disease (GvHD). The decision to use a different type of HSCT depends on various factors, including remission status, comorbidities, and the patient’s preferences. While newer therapies are emerging, SC transplantation continues to play a vital role in the management of r/r HL.

Non-Hodgkin’s lymphoma

Auto-HSCT plays a crucial role in the treatment of many subtypes of NHL, but its use and effectiveness vary substantially depending on the specific type of lymphoma. The biological nature of NHL is extremely heterogeneous and includes numerous pathohistological entities, 85% of which are of B-cell origin. Unlike in HL, where the treatment is more standardized, the diverse nature of NHL requires a tailored approach.

The main purpose of auto-HSCT in NHL is to enable the use of HDCT⁵⁴. The most common representatives of aggressive B-cell lymphomas, which are candidates for auto-HSCT, are diffuse large B-cell lymphoma (DLBCL), MCL, indolent follicular lymphoma (FL), and, concerning T-cell types, peripheral T-cell lymphoma. Here is a summary of the role of auto-HSCT in these NHL subtypes.

Diffuse large B-cell lymphoma

First-line treatment: for most patients, DLBCL is successfully treated with standard immunochemotherapy (e.g., rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone – R-CHOP), achieving remission rates of approximately 60–70%. Auto-HSCT is not standard of care as consolidation therapy in first remission⁶⁶.

r/r DLBCL is a platform where auto-HSCT is considered a standard and potentially curative treatment option. However, before undergoing auto-HSCT, the disease status of r/r DLBCL must be chemosensitive after receiving salvage therapy. In chemotherapy-refractory patients, some other treatment options, such as monoclonal Abs-drug conjugates (e.g., polatuzumab vedotin), bispecific Abs (e.g., glofitamab), or CAR-T cells, provide an adequate therapeutic response⁶⁷.

Mantle cell lymphoma

Since MCL is a highly aggressive disease, consolidation of first remission with auto-HSCT has represented the standard of care for almost two decades⁶⁸. The goal is to extend the duration of the first remission and improve long-term survival. This approach is a standard of care and an important part of treatment for many younger patients with MCL⁶⁹. In chemo-refractory patients, the Bruton tyrosine kinase inhibitor ibrutinib or the immunomodulatory drug LEN can be treatment options, sometimes as a “bridge” to allo-HSCT. For patients with r/r MCL, allo-HSCT may also be considered. This approach is more intense and bears a higher risk, but it can be effective due to the graft-versus-lymphoma effect, where the donor’s immune cells attack the remaining tumor cells.

Follicular lymphoma

Auto-HSCT is not typically part of the initial treatment for FL, which is often managed with less intensive therapies. For patients with r/r FL who no longer respond to other treatments, auto-HSCT can be used to achieve a long-lasting remission. Allo-HSCT may also be an option for a small, selected group of patients, particularly those with a high-risk FL or those who have failed auto-HSCT⁷⁰.

Key factors that historically predicted a good outcome with auto-HSCT in r/r FL include chemosensitivity to salvage therapy. Namely, patients who achieve a complete or partial response after a salvage chemotherapy regimen before transplant generally have better outcomes⁷¹. Patients who relapse more than 2 years after their initial therapy tend to have better outcomes with auto-HSCT compared to those with early relapse (within 24 months, also known as progression of disease within 24 months – POD24). However, some studies have shown that auto-HSCT can still be a valuable option even for patients with POD24, leading to improved survival⁷². Studies have found that patients who were sensitive to rituximab-based immune-chemotherapy prior to auto-HSCT had significantly better outcomes. The introduction of new drugs and cellular therapies has dramatically altered the treatment landscape for r/r FL. These new options have provided effective alternatives to intensive chemotherapy and auto-HSCT, particularly for patients who are not suitable candidates for a transplant or those who have failed prior therapies or were completely refractory. The use of targeted therapies, such as Bruton tyrosine kinase inhibitors, phosphoinositide 3-kinase inhibitors, and enhancer of zeste homolog 2 inhibitors, has become a cornerstone of treatment for r/r FL. These agents offer durable responses with a more favorable toxicity profile compared to traditional chemotherapy. The novel cellular approach, like CAR-T-cell therapy, has emerged as a powerful option for patients with multiply relapsed FL. It has shown impressive response rates, even in patients who have failed multiple prior lines of therapy, including rituximab and other targeted drugs. Additionally, a new class of immunotherapy called bispecific Abs is also

showing promise in r/r FL, offering another alternative to traditional treatments⁷³.

Peripheral T-cell lymphomas

Peripheral T-cell lymphomas are generally more aggressive and have a poorer prognosis than B-cell lymphomas. In many cases, auto-HSCT may be used as consolidation of first remission to prevent relapse. For patients with relapsed peripheral T-cell lymphoma, an allo-HSCT is often considered due to the role of donor T cells for the potential curative graft-versus-lymphoma effect⁷⁴.

The most frequent indications for allo-HSCT in hematology

Allo-HSCT works by replacing a patient's unhealthy or damaged BM with healthy donor HSCs, which then produce a new, well-functioning immune system. This new immune system can recognize and destroy remaining cancer cells, a process known as the graft-versus-tumor or graft-versus-leukemia (GvL) effect. The most frequent indications for allo-HSCT among hematologic disorders are malignant disorders, such as leukemias, followed by other hematologic malignancies and non-malignant disorders like BM failure syndromes. As per EBMT's last activity survey, AML is the most common indication for allo-HSCT and accounts for more than one-third of allo-HSCT⁷⁵.

Malignant disorders as indications for allo-HSCT

As mentioned, common indications for clinical application of allo-HSCT among hematological disorders include various malignant diseases, as presented below: in patients with AML who have intermediate- or high-risk disease in their first remission, or in those with relapsed disease in second or subsequent complete remission, allo-HSCT is considered the only curative option⁷⁶.

ALL with high-risk characteristics defined by well-established criteria is an indication for allo-HSCT, both in children and adults. For patients with relapsed disease in second or subsequent complete remission, allo-HSCT is also a reasonable treatment option⁷⁷. In patients with *BCR-ABL*⁺ ALL, treatment with second- or third-generation tyrosine kinase inhibitors may be preferred in certain circumstances.

Myelodysplastic syndrome with intermediate-2 to high-risk characteristics has a significant chance of transforming into AML and is a typical indication for allo-HSCT as a primary treatment option⁷⁸.

Myelofibrosis and other Philadelphia-negative MPN with high-risk scores and a high risk of disease progression are also standard indications for allo-HSCT as the only potentially curative treatment⁷⁹.

Chronic myeloid leukemia became potentially curable in the era of tyrosine kinase inhibitors, first to third generation. These drugs have largely replaced allo-HSCT for chronic myeloid leukemia, but when patients are intolerant

or resistant to these drugs, it is still a reasonable treatment option⁸⁰.

The r/r lymphomas, especially when a prior auto-HSCT has failed, can be reasonable candidates for allo-HSCT, taking into consideration all risk factors connected to patients and disease status⁸¹.

Non-malignant disorders as indications for allo-HSCT

Severe aplastic anemia as a BM failure syndrome is a significant indication for allo-HSCT, particularly for younger patients with a fully matched sibling donor. Congenital BM failure syndromes like Fanconi anemia and severe congenital neutropenia are also treated with allo-HSCT. Primary immunodeficiency syndromes, as severe inherited immune system disorders, can also be cured with allo-HSCT⁸².

Congenital anemias like thalassemia major and sickle cell anemia can be treated with allo-HSCT as a curative treatment, especially in countries where these diseases are common genetic disorders⁸².

Taking into account all the above, we must point out that allo-HSCT represents the most powerful form of adoptive immunotherapy for cancer, particularly for hematologic malignancies. Its curative potential is not solely linked to the HDCT +/- radiotherapy as part of the conditioning regimen, which is used to eliminate malignant cells, but is also present due to the GvL effect. Namely, allo-HSCT functions as an adoptive immunotherapy, and its mechanisms are based on the mentioned GvL effect.

The settings and application of adoptive immunotherapy

Adoptive immunotherapy is a form of treatment that uses the cells of our immune system (collected by apheresis, *ex vivo* modified, and then reinfused) to eliminate some tumor/cancer cells. In a broader sense, the term adoptive immunotherapy also includes the application of donor immunocompetent cells in order to achieve an anti-tumor effect (e.g., GvL effect).

The main aspects of adoptive immunotherapy

Adoptive immunotherapy is a form of treatment that uses donor immune cells, such as T cells, to fight against the patient's malignant cells⁸³. In allo-HSCT, the "graft" of donor SCs is not just a source of new blood cells; it is a source of an entirely new immune system for the patient. This new immune system, derived from the donor, has a potent anti-tumor effect. The main principle is that the donor's immune cells recognize the patient's malignant cells as "foreign". This occurs because malignant cells, although originating from the patient, may express unique antigens or exhibit altered patterns of antigen presentation. Donor T cells and other immune cells, such as natural killer (NK) cells, can mount an immune response against the patient's malignant cells, leading to their destruction.

A few crucial points of the model of adoptive immunotherapy

The transfer of immunocompetent cells since the donor graft contains T cells, NK cells, and other immune cells that are already “programmed” to fight infections and recognize foreign threats, presents the mainstay of adoptive immunotherapy. These immune cells, infused into the patient, are able to attack the malignant clone directly⁸⁴.

The creation of a new, healthy immune system, as donor HSCs engraft in the patient’s BM niche and begin to produce all types of blood cells, including a new, healthy population of cells and other immune cells, is the goal of adoptive immunotherapy. This new immune system can provide long-term surveillance against the disease relapse. Reconstitution of some donor immune cells is crucial for protecting a patient from disease relapse⁸⁵.

Controlling alloreactivity is crucial after allo-HSCT with strong monitoring and management of immunosuppressive therapy. Despite auto-HSCT, which provides autologous support with HSCs after a high-dose conditioning regimen, allo-HSCT can produce a graft-versus-tumor effect. This effect represents the immune response of the donor’s cells against the patient’s allo-antigens, which can be a double-edged sword, leading to both a beneficial GvL effect and a dangerous side effect known as GvHD. Therefore, the GvL effect is the primary mechanism by which allo-HSCT provides its long-term curative benefit⁸⁶. In the context of alloreactivity, GvHD is also one of the earliest and most powerful effects that can be present in a mild-to-moderate form that protects patients from leukemia relapse. Unfortunately, severe GvHD is a life-threatening complication that targets the patient’s skin, lung, liver, upper and lower gastrointestinal tract, and all other healthy tissues⁸⁶.

In the setting of early leukemia relapse after allo-HSCT or a decrease in full donor chimerism, the additional application of donor lymphocytes, so-called donor lymphocyte infusion, can provide additional GvL effect. Namely, the infusion of more donor lymphocytes can induce a remission, even without additional chemotherapy. This shows that the donor immune cells, not just the conditioning regimen, are capable of eradicating the leukemia⁸⁷. In order to deplete alpha-beta T-cell receptor (TCR) T lymphocytes while preserving gamma-delta TCR T lymphocytes, *ex vivo* graft manipulation or T-cell depletion has shown that removal of T cells from the donor graft before transplantation decreases the incidence of GvHD. However, this also leads to a significant increase in the risk of leukemia relapse, further proving that the donor T cells are crucial for the GvL effect⁸⁷⁻⁸⁹.

Moreover, the type of conditioning regimen can either potentiate myeloablation in the myeloablative setting, so-called myeloablative conditioning, or enhance immunogenicity in a reduced-intensity setting [reduced-intensity conditioning (RIC) regimens]. The development of RIC regimens – also known as “mini-transplants” – provides a powerful GvL effect. These regimens use lower doses of chemotherapy that are sufficient to allow donor cell engraftment, but not to fully

eradicate the malignant cells. The primary anti-tumor effect is then left to the donor’s immune cells. This approach has made allo-HSCT an option for older and less fit patients⁷⁸.

As previously mentioned, the GvL effect can be potentiated by cellular mediators such as T cells (cytotoxic T-lymphocytes), NK cells, which can kill leukemia cells without prior sensitization, and are particularly important in haploididential transplants, and by B cells, dendritic cells, and other immune cells that also contribute to the GvL effect by supporting and modulating the T-cell response^{86,87}.

Our data also show that immune reconstitution after allo-HSCT is pivotal in achieving favorable long-term outcomes by influencing the rates of infection, GvHD, and relapse. Namely, we evaluated the clinical impact of immune reconstitution on NK cells on day +90 after allo-HSCT, as well as CD4⁺ T cells, CD8⁺ T cells, B cells, and NKT cells by performing a landmark analysis in event-free patients. Our results showed that high NK cell counts on day +90 (>178 cells/µL) were associated with improved OS ($p = 0.039$) and lower rates of non-relapse mortality [1-year cumulative incidence of 5.7% vs. 31.4%, hazard ratio 0.16, 95% confidence interval: 0.04–0.69, $p = 0.014$] after T-cell-depleted allo-HSCT⁸⁵.

Conclusion

Auto-HSCT continues to be a standard treatment to consolidate first-line response for many patients with MM. However, its role is increasingly being integrated with and influenced by a growing number of novel drugs. These new agents are not only making auto-HSCT more effective but are also providing additional treatment options, leading to more personalized and long-lasting outcomes for multiple myeloma patients. Like in Hodgkin’s lymphoma, the role of auto-HSCT in non-Hodgkin’s lymphoma is being influenced by the emergence of new, highly effective therapies. Targeted drugs, CAR T-cell therapy, and bispecific antibodies are changing the treatment sequence and raising questions about whether transplantation can be delayed or even avoided for some patients. Auto-HSCT is generally reserved for lymphoma patients with relapsed or refractory disease who are chemosensitive following salvage therapy, and for consolidation of first remission in high-risk patients to improve the chances of long-term survival.

Allo-HSCT is a highly effective form of adoptive immunotherapy because it provides a new, healthy immune system capable of recognizing and destroying a patient’s malignant cells. The most frequent indications among malignant disorders are acute leukemias, and in non-malignant settings, severe aplastic anemia and severe immunodeficiency. The transfer of immunocompetent cells from the donor graft presents the backbone of adoptive immunotherapy. A strong graft-versus-leukemia effect, mediated by donor immune cells, is a fundamental mechanism of this curative treatment, demonstrating the power of the immune system to combat aggressive hematologic malignant disorders.

REFERENCE

- Smith A. A glossary for stem-cell biology. *Nature* 2006; 441: 1060. DOI: <https://doi.org/10.1038/nature04954>
- Pavlovic M, Balint B. Stem Cells and Tissue Engineering. New York: Springer; 2013. p. 154. DOI:10.1007/978-1-4614-5505-9
- Balint B, Pavlovic M, Todorovic Balint M. Stem cells: Haemobiology and clinical data summarising: a critical review. *Ser Med* 2020; 51(4): 261–71. DOI:10.5937/scriptamed51-29953
- Balint B, Pavlovic M, Todorovic M. From nucleated to ex vivo manipulated stem cells – an updated biological and clinical synopsis. *Medicinska reč* 2020; 1(1): 1–9. DOI: <https://doi.org/10.5937/medrec2001001B>
- Balint B, Pavlović M, Marković O, Borović S, Todorović M. A stem cell overview – from evolving hemobiological concepts to (auto)grafting in clinical practice. *Serb J Med Chamber* 2022; 3(2): 135–48. DOI: <https://doi.org/10.5937/smclk3-37014>
- Balint B. Stem cells – hemobiology and therapeutic approaches. In: Vučetić D, Ostožić G, Balint B, editors. Basics of transfusiology with hemobiology. Beograd: Medicinski fakultet VMA – Medija centar Održana; 2014. p. 151–202.
- Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revised: CXR4 positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. *Leukemia* 2004; 18(1): 29–40. DOI: 10.1038/sj.leu.2403184.
- Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs). *Circ Res* 2019; 124(2): 208–10. DOI: 10.1161/CIRCRESAHA.118.314287
- Wojakowski W, Kucia M, Zuba-Surma E, Jadzynk T, Ksiazek B, Ratajczak MZ, et al. Very small embryonic-like stem cells in cardiovascular repair. *Pharmacol Ther* 2011; 129(1): 21–8. DOI: 10.1016/j.pharmthera.2010.09.012
- Bhartiya D, Singh P, Sharma D, Kaushik A. Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. *Stem Cell Rev Rep* 2022; 18(5): 1718–27. DOI: 10.1007/s12015-021-10243-6
- Moñivas Gallego E, Zurita Castillo M. Mesenchymal stem cell therapy in ischemic stroke trials. A systematic review. *Regen Ther* 2024; 27: 301–6. DOI: 10.1016/j.reth.2024.03.026
- Chen X, Zheng J, Yin L, Li Y, Liu H. Transplantation of three mesenchymal stem cells for knee osteoarthritis, which cell and type are more beneficial? a systematic review and network meta-analysis. *J Orthop Surg Res* 2024; 19(1): 366. DOI: 10.1186/s13018-024-04846-1
- Patel GD, Liu L, Li A, Yang YH, Shen CC, Brand-Saberi B, et al. Mesenchymal stem cell-based therapies for treating well-studied neurological disorders: a systematic review. *Front Med (Lausanne)* 2024; 11: 1361723. DOI: 10.3389/fmed.2024.1361723
- Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirkzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and mesenchymal stem cells. *Int Immunopharmacol* 2021; 97: 107669. DOI: 10.1016/j.intimp.2021.107669
- Agrawal M, Alexander A, Khan J, Giri TK, Siddique S, Dubey SK, et al. Recent biomedical applications on stem cell therapy: A brief overview. *Curr Stem Cell Res Ther* 2019; 14(2): 127–36. DOI: 10.2174/1574888X13666181002161700
- Aly RM. Current state of stem cell-based therapies: an overview. *Stem Cell Investig* 2020; 7: 8. DOI: 10.21037/sci-2020-001
- Balint B, Stamatović D, Todorović M, Jentić M, Ostožić G, Pavlović M, et al. Stem cells in the arrangement of bone marrow repopulation and regenerative medicine. *Vojnosanit Pregl* 2007; 64(7): 481–4. DOI: 10.2298/vsp0707481b
- Balint B, Obradovic S, Todorovic M, Pavlovic M, Mihaljevic B. Stem cell-based (auto)grafting: from innovative research toward clinical use in regenerative medicine. In: Alimogbaddam K, editor. Stem cell biology in normal life and diseases. London: InTechOpen 2013. p. 111–35. DOI: 10.5772/54473
- Obradović S, Balint B, Romanović R, Trifunović Z, Rusović S, Baskot B, et al. Influence of intracoronary injections of bone-marrow-derived mononuclear cells on large myocardial infarction outcome: quantum of initial necrosis is the key. *Vojnosanit Pregl* 2009; 66(12): 998–1004. DOI: <https://doi.org/10.2298/VSP0912998O>
- Trifunović Z, Obradović Z, Balint B, Ilić R, Vukić Z, Šišić M, et al. Functional recovery of patients with ischemic cardiomyopathy treated with coronary bypass surgery and concomitant intra-myocardial bone marrow mononuclear cell implantation – long term follow-up study. *Vojnosanit Pregl* 2015; 72(3): 225–32. DOI: 10.2298/vsp140109071t
- Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Ajolabi S, et al. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. *Heart Fail Rev* 2024; 29(3): 573–98. DOI: 10.1007/s10741-023-10351-0
- Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. *Regen Med* 2024; 19(9–10): 497–509. DOI: 10.1080/17460751.2024.2393558
- Vaughan W, Seshadri T, Bridges M, Keating A. The principles and overview of autologous hematopoietic stem cell transplantation. *Cancer Treat Res* 2009; 144: 23–45. DOI: 10.1007/978-0-387-78580-6_2
- Balint MT, Lemajić N, Jurišić V, Pantelić S, Stanisavljević D, Kurtović NK, et al. An evidence-based and risk-adapted GSF versus GSF plus plerixafor mobilization strategy to obtain a sufficient CD34+ cell yield in the harvest for autologous stem cell transplants. *Transl Oncol* 2024; 39: 101811. DOI: 10.1016/j.tranon.2023.101811
- Kanate AS, Majhail NS, Savani BN, Bredeson C, Champlin RE, Crawford S, et al. Indications for hematopoietic cell transplantation and immune effector cell therapy: guidelines from the American society for transplantation and cellular therapy. *Biol Blood Marrow Transplant* 2020; 26(7): 1247–56. DOI: 10.1016/j.bbmt.2020.03.002
- Singh AK, McGuirk JP. Allogeneic stem cell transplantation: A historical and scientific overview. *Cancer Res* 2016; 76(22): 6445–51. DOI: 10.1158/0008-5472.CAN-16-1311
- Rostami T, Rad S, Rostami MR, Mirhosseini SA, Alemi H, Kharandgar N, et al. Hematopoietic stem cell transplantation in sickle cell disease: A multidimensional review. *Cell Transplant* 2024; 33: 9636897241246351. DOI: 10.1177/09636897241246351
- Ali H, Bacigalupo A. 2024 update on allogeneic hematopoietic stem cell transplant for myelofibrosis: A review of current data and applications on risk stratification and management. *Am J Hematol* 2024; 99(5): 938–45. DOI: 10.1002/ajh.27274
- Bigi F, Manzato E, Barbato S, Talarico M, Puppi M, Masci S, et al. Impact of anti-CD38 monoclonal antibody therapy on CD34+ hematopoietic stem cell mobilization, collection, and engraftment in multiple myeloma patients – A systematic review. *Pharmaceuticals (Basel)* 2024; 17(7): 944. DOI: 10.3390/ph17070944
- Banerjee D, Bhattacharya A, Puri A, Munde S, Mukerjee N, Mohite P, et al. Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology – a comprehensive review. *Int J Surg* 2024; 110(12): 7528–45. DOI: 10.1097/JJS.0000000000002111

31. Li H, Zheng Y, Gao K, Tian C. Tandem autologous hematopoietic stem cell transplantation for patients with multiple myeloma: a systematic review and meta-analysis. *Hematology* 2024; 29(1): 2343164. DOI: 10.1080/16078454.2024.2343164

32. Metafuni E, Busnego Barreto MT, Valentini CG, Giammarco S, Limongiello MA, Sorà F, et al. Pure red cell aplasia among ABO mismatched hematopoietic stem cell transplant recipients: a 13-years retrospective study and literature review. *Front Oncol* 2024; 14: 1386670. DOI: 10.3389/fonc.2024.1386670

33. Adkins BD, Jacobs JW, Booth GS, Savani BN, Stephens LD. Transfusion support in hematopoietic stem cell transplantation: A contemporary narrative review. *Clin Hematol Int* 2024; 6(1): 128–40. DOI: 10.46989/001c.94135

34. Mercadal S, Mussetti A, Lee CJ, Arevalo C, Odstrcil SM, Peña E, et al. Allogeneic stem cell transplantation and CAR-T in B-cell Non-Hodgkin Lymphoma: a two-center experience and review of the literature. *Ann Hematol* 2024; 103(5): 1717–27. DOI: 10.1007/s00277-024-05677-0

35. Savic A, Balint B, Urosevic I, Rajic N, Todorovic M, Percic I, et al. Syngeneic peripheral blood stem cell transplantation with immunosuppression for hepatitis-associated severe aplastic anemia. *Turk J Hematol* 2010; 27(4): 294–8. DOI: 10.5152/tjh.2010.52

36. Balint B, Stamatovic D, Todorovic M, Elez M, Vojvodic D, Pavlovic M, et al. Autologous transplant in aplastic anemia – a case report. *Transfus Apher Sci* 2011; 45(2): 137–41. DOI: 10.1016/j.transci.2011.07.008

37. Thangavelu L, Mohan S, Alfaifi HA, Farasani A, Menon SV, Bansal P, et al. Safety and efficacy of stem cell therapy for Crohn's disease: an umbrella review of systematic reviews. *Int J Surg* 2024; 110(12): 7495–507. DOI: 10.1097/JJS.0000000000002104

38. Serrano-Fernandez V, Carmona-Torres JM, Arroyo-Rodriguez A, Lopez-Gonzalez A, Rabanales-Sotos J, Laredo-Aguilera JA. Hematopoietic stem cell transplantation therapy for refractory Crohn disease: A systematic review and meta-analysis. *Medicine (Baltimore)* 2024; 103(42): e40144. DOI: 10.1097/MD.00000000000040144

39. Barabadi M, Paton MCB, Kumar N, Lim R, Payne NL. Stem cell derived extracellular vesicle therapy for multiple sclerosis, A systematic review and meta-analysis of preclinical studies. *Stem Cells Transl Med* 2024; 13(5): 436–47. DOI: 10.1093/stcltm/szac011

40. Khandia R, Gurjar P, Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders – a review. *Int J Surg* 2024; 110(10): 6367–81. DOI: 10.1097/JJS.0000000000001609

41. Todorović-Balint M, Bila J, Balint B, Jeličić J, Đunić I, Antić D, et al. Influence of applied CD34+ cell dose on the survival of Hodgkin's lymphoma and multiple myeloma patients following autologous stem cell transplants. *Vojnosanit Pregl* 2020; 77(8): 844–51. DOI: <https://doi.org/10.2298/VSP180808160T>

42. Janakiraman N. Peripheral blood stem cell transplantation as an alternative to bone marrow transplantation: an overview. *Henry Ford Hosp Med J* 1991; 39(2): 103–7.

43. Balint B, Stanojević I, Todorović M, Stamatović D, Pavlović M, Vojvodic D. Relative frequency of immature CD34+/CD90+ subset in peripheral blood following mobilization correlates closely and inversely with the absolute count of harvested stem cells in multiple myeloma patients. *Vojnosanit Pregl* 2017; 74(11): 1071–7. DOI: <https://doi.org/10.2298/VSP170505090B>

44. Balint B, Ljubenov M, Stamatović D, Todorović M, Pavlović M, Ostojić G, et al. Stem cell harvesting protocol research in autologous transplantation setting: large volume vs. conventional cytapheresis. *Vojnosanit Pregl* 2008; 65(7): 545–51. DOI: 10.2298/vsp0807545b

45. Skoric D, Balint B, Petakov M, Sindjic M, Rodic P. Collection strategies and cryopreservation of umbilical cord blood. *Transfus Med* 2007; 17(2): 107–13. DOI: 10.1111/j.1365-3148.2007.00728.x.

46. Balint B, Ivanovic Z, Petakov M, Taseski J, Jovic G, Stojanovic N, et al. The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of MRA. *Bone Marrow Transpl* 1999; 23(6): 613–9. DOI: 10.1038/sj.bmt.1701623

47. Kim SK, Yoo J, Lee JH, Lee HE, Ahn JS, Koh KN, et al. Current practices in peripheral blood stem cell processing and cryopreservation: a nationwide survey of Korean transplant centers. *Blood Res* 2025; 60(1): 41. DOI: 10.1007/s44313-025-00090-6

48. Dobruskin M, Toner G, Kander R. Cryopreservation practices in clinical and preclinical iPSC-based cell therapies: Current challenges and future directions. *Biotechnol Prog* 2025; 41(4): e70031. DOI: 10.1002/bptr.70031

49. Aarattuthodi S, Kang D, Gupta SK, Chen P, Redel B, Matuba M, et al. Cryopreservation of biological materials: applications and economic perspectives. *In Vitro Cell Dev Biol Anim* 2025; 1–24. DOI: <https://doi.org/10.1007/s11626-025-01027-0>

50. Balint B, Pavlović M, Abazović Dž, Toroman S, Grubović Rastvorčeva RM, Dinić M, et al. Cellular cryobiology – a review of basic concepts and "operating-design" of cryopreserved cells. *Vojnosanit Pregl* 2023; 80(11): 899–905. DOI: 10.2298/VSP230510065B

51. Ali MO, Al Hadidi S. High-dose (conditioning) regimens used prior to autologous stem cell transplantation in multiple myeloma. *Transplant Cell Ther* 2022; 28(9): 572–80. DOI: 10.1016/j.jtct.2022.06.013

52. Passweg JR, Baldomero H, Atlija M, Kleovouli I, Witaszek A, Alexander T, et al. The 2023 EBMT report on hematopoietic cell transplantation and cellular therapies. Increased use of allogeneic HCT for myeloid malignancies and of CAR-T at the expense of autologous HCT. *Bone Marrow Transplant* 2025; 60(4): 519–28. DOI: 10.1038/s41409-025-02524-2.

53. Samara Y, Mei M. Autologous stem cell transplantation in Hodgkin lymphoma – Latest advances in the era of novel therapies. *Cancers (Basel)* 2022; 14(7): 1738. DOI: 10.3390/cancers14071738

54. Zabid U, Akbar F, Amaraneni A, Husnain M, Chan O, Riaz IB, et al. A review of autologous stem cell transplantation in lymphoma. *Curr Hematol Malig Rep* 2017; 12(3): 217–26. DOI: 10.1007/s11899-017-0382-1

55. Devarakonda S, Esebera Y, Sharma N. Role of stem cell transplantation in multiple myeloma. *Cancers (Basel)* 2021; 13(4): 863. DOI: 10.3390/cancers13040863

56. Kumar SK, Buadi FK, Rajkumar SV. Pros and cons of frontline autologous transplant in multiple myeloma: the debate over timing. *Blood* 2019; 133(7): 652–9. DOI: 10.1182/blood-2018-08-825349

57. Shimazu Y, Mizuno S, Fuchida SI, Suzuki K, Tsukada N, Hanagishi A, et al. Improved survival of multiple myeloma patients treated with autologous transplantation in the modern era of new medicine. *Cancer Sci* 2021; 112(12): 5034–45. DOI: 10.1111/cas.15163

58. Jung J, Jung SH, Lee JJ, Do YR, Kang KW, Lee JL, et al. Comparative analysis of single versus tandem autologous stem cell transplantation in patients with multiple myeloma in Korea: the KMM2102 study. *Sci Rep* 2024; 14(1): 24325. DOI: 10.1038/s41598-024-74625-9

59. Pulte ED, Dmytryjuk A, Nie L, Goldberg KB, McKee AE, Farrell AT, et al. FDA approval summary: Lenalidomide as maintenance therapy after autologous stem cell transplant in newly diagnosed multiple myeloma. *Oncologist* 2018; 23(6): 734–9. DOI: 10.1634/theoncologist.2017-0440

60. Lin CM, Chang LC, Shau WY, Chen CL, Yao CY, Tien FM. Treatment benefit of upfront autologous stem cell transplanta-

tion for newly diagnosed multiple myeloma: a systematic review and meta-analysis. *BMC Cancer* 2023; 23(1): 446. DOI: 10.1186/s12885-023-10907-1

61. Rocchi S, Zannetti BA, Marconi G, Lanza F. Multiple myeloma: The role of autologous stem cell transplantation in the era of immunotherapy. *Cells* 2024; 13(10): 853. DOI: 10.3390/cells13100853

62. Firestone RS, Mailankody S. Current use of CAR T cells to treat multiple myeloma. *Hematology Am Soc Hematol Educ Program* 2023; 2023(1): 340–7. DOI: 10.1182/hematology.2023000434

63. Grover NS, Dittus C, Thakkar A, Beaven AW. The optimal management of relapsed and refractory Hodgkin lymphoma: post-brentuximab and checkpoint inhibitor failure. *Hematology Am Soc Hematol Educ Program* 2023; 2023(1): 510–8. DOI: 10.1182/hematology.2023000450

64. Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AE-THERA): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2015; 385(9980): 1853–62. Erratum in: *Lancet* 2015; 386(9993): 532. DOI: 10.1016/S0140-6736(15)61475-1

65. Lin AY, Schnitter JM, Gordon LI. Immune checkpoint blockade for the treatment of Hodgkin lymphoma. *Immunotargets Ther* 2022; 11: 1–10. DOI: 10.2147/ITT.S284988

66. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure—what to do? *Hematology Am Soc Hematol Educ Program* 2016; 2016(1): 366–78. DOI: 10.1182/asheducation-2016.1.366

67. Shah NN, Ahn KW, Litorish C, He Y, Sauter C, Fenske TS, et al. Is autologous transplant in relapsed DLBCL patients achieving only a PET+ PR appropriate in the CAR T-cell era? *Blood* 2021; 137(10): 1416–23. Erratum in: *Blood* 2021; 137(20): 2854–5. DOI: 10.1182/blood.2021011979.

68. Beittinjaneh A, Kaufman A, Wang Y, Jain P, Srour SA, Wang M. Is there still a role for transplant for patients with mantle cell lymphoma (MCL) in the era of CAR-T cell therapy? *Curr Treat Options Oncol* 2022; 23(11): 1614–25. DOI: 10.1007/s11864-022-01020-9

69. Kumar A. What is the role of up-front autologous stem cell transplantation in mantle cell lymphoma? *Hematology Am Soc Hematol Educ Program* 2022; 2022(1): 155–62. DOI: 10.1182/hematology.2022000333

70. Maura F, Farina L, Corradini P. The Role of Autologous and Allogeneic Stem Cell Transplantation in Follicular Lymphoma in The New Drugs Era. *Mediterr J Hematol Infect Dis* 2016; 8(1): e2016045. DOI: 10.4084/MJHID.2016.045

71. Kordic A, Phillips TJ, Weiss J. The current state of bispecific antibodies and T-cell directed therapy in NHL. *Cancers (Basel)* 2025; 17(7): 1192. DOI: <https://doi.org/10.3390/cancers17071192>

72. Jurinovic V, Metzger B, Pfreundschuh M, Schmitz N, Wandt H, Kehler U, et al. Autologous stem cell transplantation for patients with early progression of follicular lymphoma: A follow-up study of 2 randomized trials from the German Low Grade Lymphoma Study Group. *Biol Blood Marrow Transplant* 2018; 24(6): 1172–9. DOI: 10.1016/j.bbmt.2018.03.022

73. Chen CJ, Choi MY, Heyman BM. Targeted therapy in follicular lymphoma: towards a chemotherapy-free approach. *Cancers (Basel)* 2023; 15(18): 4483. DOI: 10.3390/cancers15184483

74. Coiffier B, Brousse N, Peuchmaur M, Berger F, Gisselbrecht C, Bryon PA, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Aggressifs). *Ann Oncol* 1990; 1(1): 45–50. DOI: 10.1093/oxfordjournals.annonc.a057673

75. Snowden JA, Sánchez-Ortega I, Corbacioglu S, Basak GW, Chabannon C, de la Camara R, et al; European Society for Blood and Marrow Transplantation (EBMT). Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. *Bone Marrow Transplant* 2022; 57(8): 1217–39. DOI: 10.1038/s41409-022-01691-w

76. Loke J, Buka R, Craddock C. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia: Who, When, and How? *Front Immunol* 2021; 12: 659595. DOI: 10.3389/fimmu.2021.659595

77. Cavallaro G, Lazzarotto D, Pavoni C, Valsecchi F, Grassi A, Papayannidis C, et al. Outcomes of allogeneic stem cell transplant in adult Philadelphia negative acute lymphoblastic leukemia patients treated with the pediatric-inspired GIMEMA 1913 protocol. A Campus ALL study. *Bone Marrow Transplant* 2025; 60(9): 1228–35. DOI: 10.1038/s41409-025-02632-z

78. Berg T, Salter B, Radford M, Chen HTT, Leber B. Allogeneic stem cell transplantation: The relevance of conditioning regime intensity for myelodysplastic syndromes (MDS). *Curr Oncol* 2025; 32(6): 319. DOI: 10.3390/curoncol32060319

79. McLornan DP, Yakoub-Agha I, Robin M, Chalandon Y, Harrison CN, Kroger N. State-of-the-art review: allogeneic stem cell transplantation for myelofibrosis in 2019. *Haematologica* 2019; 104(4): 659–68. DOI: 10.3324/haematol.2018.206151

80. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. *Am J Hematol* 2024; 99(11): 2191–212. DOI: 10.1002/ajh.27443

81. Roehé P, Brison G, Furst S, Noel R, Montes De Oca K, Collignon A, et al. Allogeneic Transplant as a Curative Option for Relapsed/Refractory Large B-Cell Lymphoma in the Era of CAR T-Cell Therapy: A Monocentric Retrospective Study. *Blood* 2022; 140(Suppl 1): 7740–1.

82. Klein OR, Bonjim C, Abraham A, Ruggeri A, Purtill D, Coben S, et al. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. *Cytotherapy* 2023; 25(5): 463–71. DOI: 10.1016/j.jcyt.2022.12.005

83. Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. *Immunol Rev* 2014; 257(1): 165–80. DOI: 10.1111/imr.12130

84. Fujinura H. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. *Pharmaceuticals (Basel)* 2014; 7(12): 1049–68. DOI: 10.3390/ph7121049

85. Pešić A, Bešerić N, Kröger N, Stanisavljević D, Kraguljac Kurtović N, Bukumirić Z, et al. High NK cell counts at day 90 predict improved survival in event-free patients after T-cell depleted allogeneic stem cell transplantation. *Front Immunol* 2025; 16: 1577924. DOI: 10.3389/fimmu.2025.1577924

86. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. *Blood* 2004; 103(3): 767–76. DOI: 10.1182/blood-2003-02-0342

87. Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. *Front Immunol* 2024; 15: 1328858. DOI: 10.3389/fimmu.2024.1328858

88. Petakov M, Balint B, Bugarski D, Jovčić G, Stojanović N, Vojvodić D, et al. Donor leukocyte infusion – the effect of mutual reactivity of donor's and recipient's peripheral blood mononuclear cell on hematopoietic progenitor cells growth. *Vojnosanit Pregl* 2000; 57(5): 89–93.

89. *Pagliuca S, Schmid C, Santoro N, Simonetta F, Battipaglia G, Guillaume T, et al.* Donor lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological malignancies: basic considerations and best practice recommendations from the EBMT. *Lancet Haematol*

2024; 11(6): e448–58. DOI: 10.1016/S2352-3026(24)00098-X

Received on August 22, 2025

Revised on November 8, 2025

Accepted on November 26, 2025

Online First January 2026

Multiparametric structural imaging biomarkers of early white matter microstructural changes during and after glioblastoma chemoradiotherapy: diffusion tensor imaging and diffusion kurtosis imaging

Multiparametrijski strukturni slikovni biomarkeri ranih promena mikrostrukture bele mase tokom i nakon hemioradioterapije glioblastoma: difuziono tenzorsko snimanje i difuziono snimanje kurtoze

Miloš Lučić*†, Igor Djan‡, Olivera Šveljo†§, Silvija Lučić*||, Olivera Ivanov*‡,
Mladen Bjelan*, Dušan Ilić§

University of Novi Sad, *Faculty of Medicine, §Faculty for Technical Sciences, Novi Sad,
Serbia; Oncology Institute of Vojvodina, ‡Radiotherapy Clinic, †Radiology Department,
||Nuclear Medicine Department, Sremska Kamenica, Serbia

Abstract

Background/Aim. Recognizing early irradiation-induced changes in the white matter is of great importance. The aim of this study was to investigate the potential use of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters as biomarkers of early brain tissue microstructural changes during chemoradiotherapy (CRT) treatment of newly diagnosed glioblastoma.

Methods. A total of 42 glioblastoma patients who underwent CRT after surgical resection/biopsy were scanned three times using magnetic resonance imaging (MRI): before treatment, after 16 fractions, and after 33 fractions. Regions of interest (ROI) with total irradiation doses of 59.4 Gy (ROI 1), 39.6 Gy (ROI 2), and 19.8 Gy (ROI 3) were identified using co-registered axial dose distribution plans/dose-volume histograms and MRI scans. For each ROI, the following DTI parameters were calculated, measured, and analyzed: fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD). The corresponding DKI parameters included: radial kurtosis (RK), axial kurtosis (AK), and mean kurtosis (MK). **Results.** A significant decrease in FA value was observed in ROI 1 (total

delivered dose 59.4 Gy) after both 16 and 33 delivered fractions, while the other DTI parameters and MK showed a significant increase. In ROI 1, a decreasing trend in RK and AK was identified, which was statistically confirmed after both 16 and 33 delivered fractions. In ROI 2 (total delivered dose of 39.6 Gy), FA values were significantly reduced after both 16 and 33 fractions, whereas RD, AD, MD, and MK were increased after 16 fractions, followed by a decrease after 33 fractions. The RK value in ROI 2 showed a significant decrease after both 16 and 33 fractions, and no changes were observed in AK values. In ROI 3 (total delivered dose of 19.8 Gy), no significant changes in any of the measured DTI or DKI parameters were noticed. **Conclusion.** DTI and DKI metric parameters may serve as biomarkers of early changes during and after CRT, providing information that may offer a better understanding of the complex dynamics of early white matter microstructural changes in response to glioblastoma CRT.

Keywords:

biomarkers; brain injuries; chemoradiotherapy; diffusion magnetic resonance imaging; diffusion tensor imaging; glioblastoma.

Apstrakt

Uvod/Cilj. Prepoznavanje ranih promena izazvanih zračenjem u beloj masi je od velike važnosti. Cilj rada bio je da se ispita mogućnost primene parametara difuzionog tenzorskog snimanja (diffusion tensor imaging - DTI) i difuzionog snimanja kurtoze (diffusion kurtosis imaging - DKI) kao

biomarkera ranih promena mikrostrukture moždanog tkiva, tokom lečenja novodijagnostikovanog glioblastoma hemioradioterapijom (HRT). **Metode.** Ukupno 42 bolesnika obolela od glioblastoma, koji su posle hirurške resekcije/biopsije podvrgnuti HRT, snimljena su tri puta magnetnom rezonancom (MR): pre terapije, posle 16 frakcija i posle 33 frakcije. Regioni od interesa (ROI), sa ukupnim

dozama zračenja od 59,4 Gy (ROI 1), 39,6 Gy (ROI 2) i 19,8 Gy (ROI 3), identifikovani su korišćenjem koregistrovanih aksijalnih planova raspodele doze/histograma zapremine doze i snimaka MR. Za svaki ROI izračunati su, izmereni i analizirani sledeći DTI parametri: frakcionala anizotropija (FA), radijalna difuzivnost (RD), aksijalna difuzivnost (AD) i srednja difuzivnost (SD). Odgovarajući DKI parametri uključivali su: radijalnu kurtozu (RK), aksijalnu kurtozu (AK) i srednju kurtozu (SK). **Rezultati.** Značajno smanjenje vrednosti FA utvrđeno je u ROI 1 (ukupna isporučena doza 59,4 Gy) posle isporučenih 16 i 33 frakcija, dok su ostali parametri DTI i SK pokazali značajno povećanje. U ROI 1 utvrđen je opadajući trend RK i AK, koji je potvrđen statistički i posle 16 i posle 33 isporučene frakcije. U ROI 2 (ukupna isporučena doza 39,6 Gy), vrednost FA bila je značajno smanjena i posle 16 i posle 33 frakcije, dok su RD,

AD, SD i SK bili povećani posle 16 frakcija, a potom smanjeni posle 33 frakcije. Vrednost RK u ROI 2 pokazala je značajno smanjenje nakon 16 i 33 frakcije, a u vrednostima AK nisu ustanovljene promene. U ROI 3 (ukupna isporučena doza 19,8 Gy) nisu primećene značajne promene ni u jednom od izmerenih DTI ili DKI parametara. **Zaključak.** Metrički parametri DTI i DKI mogu poslužiti kao biomarkeri ranih promena tokom i posle HRT, obezbeđujući informacije koje pružaju bolje razumevanje složene dinamike ranih promena mikrostrukture bele mase, kao odgovor na HRT glioblastoma.

Ključne reči:

biomarkeri; mozak, povrede; radiohemoterapija; magnetna rezonanca, difuziona; snimanje, difuziono, tenzorsko; glioblastom.

Introduction

Treatment of newly diagnosed glioblastoma (GB), as one of the biologically most aggressive brain tumors in adult patients without chemoradiotherapy (CRT), is nowadays impossible to imagine ¹⁻⁴. It is believed that transient demyelination, axon impairment, and neuroinflammation are important markers of white matter injury during CRT in GB patients ^{5, 6}. Since these processes are vital for normal neurological functioning, treatment-induced alterations eventually lead to perivascular, diffuse demyelination and axon degeneration in later stages ⁶⁻⁸.

Recognizing early irradiation-induced changes in normal-appearing white matter is therefore of great importance. Although several other imaging modalities have recently been proposed, structural imaging based on diffusion-weighted magnetic resonance imaging (MRI) remains an important tool for assessing brain microstructural alterations during and after CRT treatment ^{9, 10}. Imaging of the brain's functional architecture became possible with the introduction of diffusion tensor imaging (DTI), a technique derived from diffusion-weighted imaging (DWI) that basically provides information on the Brownian motion of water molecules within brain tissue. The DTI technique provides insight into white matter tracts and brain tissue microstructural changes ^{11, 12} that could be detected even before the appearance of morphological changes, usually evaluated by conventional MRI techniques. Measurable DTI parameters such as fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) are widely accepted for white matter microstructure assessment ¹³.

Differences in FA values, which provide information on white matter density and integrity, are observed not only between normal-appearing white matter and tumorous tissue but also between normal-appearing white matter and impaired white matter tissue during and after radiotherapy (RTh) treatment ^{14, 15}. RD represents diffusion magnitude perpendicular to the white matter fibers, and is associated with myelination changes, while AD represents diffusion magnitude parallel to the white matter fibers, and, as

suggested by histologically correlated data, could be linked to the axonal injury ^{13, 16, 17}. MD is usually considered an inverse measure of membrane density, and is related to cellularity, edema, and necrosis ^{13, 17-19}.

Besides DTI metrics, quantified with a diffusion tensor using a Gaussian distribution function, a whole new set of parameters that takes into account the non-Gaussian behavior of water molecular diffusion by mathematical calculation of the kurtosis of the diffusion displacement probability distribution, diffusion kurtosis imaging (DKI) has been translated from experimental to clinical settings ^{20, 21}. The degree of non-Gaussian water diffusion in kurtosis imaging is quantified using radial kurtosis (RK), axial kurtosis (AK), and mean kurtosis (MK). Some authors suggested that kurtosis metrics may complement standard diffusion metrics, and that DKI may be more sensitive to some aspects of brain tissue microstructure alterations ^{20, 22-24}.

Several studies have shown that DKI values contribute to better discrimination between high-grade and low-grade gliomas than the conventional diffusion parameters ²⁵⁻²⁷. DKI also appears to be a promising method for the early detection of healthy brain tissue damage during and/or after RTh treatment, potentially providing more information about mechanisms of white matter injury subsequent to brain irradiation ¹⁹. Since both concomitant and adjuvant CRT with temozolomide have become an unavoidable part of the treatment of GB patients ^{1, 28, 29}, and improve survival after resection or biopsy, the impact of irradiation on the healthy brain tissue, including the surrounding normal-appearing white matter, is inevitable ^{18, 30}. In recent years, numerous studies have been investigating chronic brain tissue and white matter injuries after the RTh treatment ³⁰⁻³⁴, among them several have used the advanced DWI MRI techniques in an attempt to identify early CRT-induced brain tissue injury ³⁵⁻³⁸.

The exact underlying pathophysiological mechanisms that result in the white matter irradiation changes are still not fully understood ^{35, 38-40}. Moreover, the impact of RTh doses and daily fractions on the changes that may be detectable by DTI or DKI parameters is still not discerned nor precisely determined ^{41, 42}.

The aim of this prospective observational study was to examine the changes of DTI and DKI parameters within the white matter at three time points—before, during, and after the application of different daily and total radiation doses, as well as to evaluate whether the DTI and DKI parameters can be used as biomarkers of early white matter radiation damage during and immediately after CRT treatment in patients with GB.

Methods

Patients and treatment

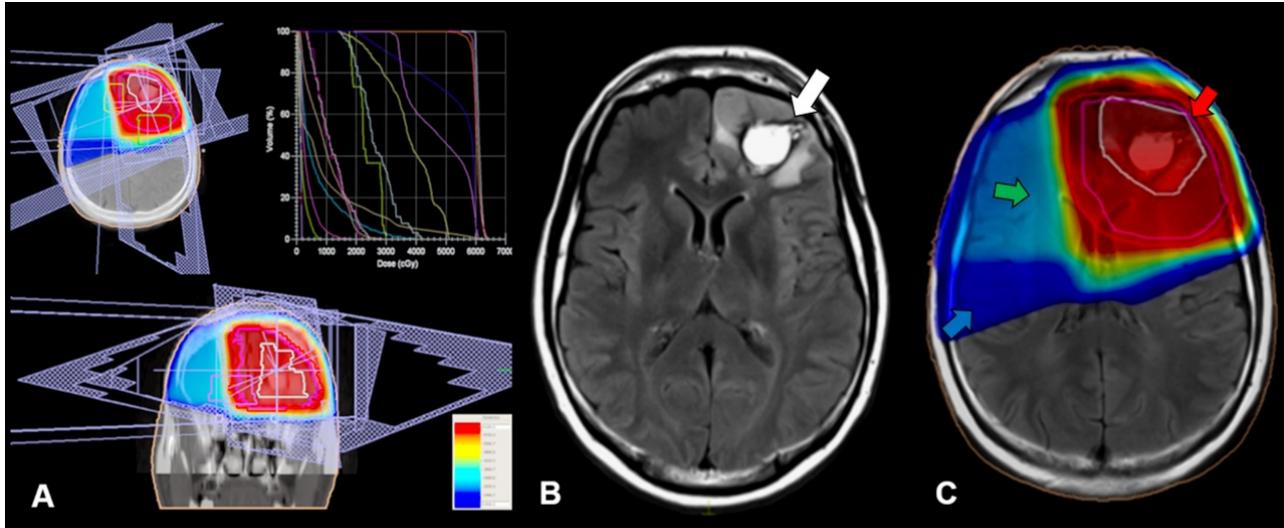
The study included 42 patients with newly diagnosed GB who underwent concurrent CRT after neurosurgical resection/biopsy (25 males, 17 females; age range 31–72 years; mean age 57.28 ± 9.87). All patients were treated with fractionated focal irradiation, delivered in 33 fractions at 1.8 Gy per fraction, resulting in a total dose of 59.4 Gy to the gross tumor volume (GTV) with a 2–3 cm margin around the clinical target volume (CTV). Conformal RTh was delivered with linear accelerators with a nominal energy of 6 megavolts, and quality assurance was performed by means of individual case reviews. Concomitant chemotherapy, consisting of temozolomide at a dose of 75 mg/m²/day, was applied from the beginning until the last day of RTh treatment (optimally for 42 days, but in real-life clinical settings, never longer than 49 days)^{1,43}.

This study was approved by the Ethics Committee of the Oncology Institute of Vojvodina, Serbia (No. 4/18/1-972/2-8, from April 12, 2018). Written informed consent was obtained from all participants.

Delineation of target volumes

For delineation of the target volume, co-registration of axial dose distribution plans and dose volume histograms to

the contrast enhanced T1-weighted (T1-w) and/or fluid-attenuated inversion recovery (FLAIR) MRI sequences were used in addition to the dedicated computerized tomography scans, that were used in the process of three-dimensional RTh planning (XiO 4.62 and Monaco 5.11, Elekta, Stockholm, Sweden).


The current European Society for Radiotherapy and Oncology (ESTRO)-Advisory Committee on Radiation Oncology Practice/European Organization for Research and Treatment of Cancer standards were used to delineate GTV, with CTV and planning target volume^{44, 45}. Recently published ESTRO-European Society of Neuro-Oncology guidelines suggested a reduction of GTV to CTV margins of 0.5–1.5 cm, recommending the exclusion of subventricular zones, and margins reduced at anatomical barriers⁴⁶, while delineation of critical organs at risk remained unchanged⁴⁷.

Three regions of interest (ROI) with total irradiation doses of 59.4 Gy (ROI 1), 39.6 Gy (ROI 2), and 19.8 Gy (ROI 3) were identified using axial dose distribution plans co-registered with contrast-enhanced three-dimensional T1-w and/or FLAIR images (Figure 1A–C). Calculated daily doses were approximately 1.8 Gy for the areas with a total delivered dose of 59.4 Gy, 1.2 Gy for the areas with a delivered dose of 39.6 Gy, and 0.6 Gy for areas with a delivered dose of 19.8 Gy.

Magnetic resonance imaging data acquisition

Patients were scanned using a 3T MR scanner (Magnetom TIM Trio, Siemens, Erlangen, Germany) using a 48-channel head-phased array coil, at three different time points: immediately before the beginning of CRT treatment, after delivering 16 fractions (approximately half of the treatment), and after 33 fractions (immediately at the end of CRT treatment).

Imaging protocol included sagittal high-resolution magnetization-prepared rapid acquisition with gradient-echo

Fig. 1 – Axial dose distribution plan with dose volume histogram of a conformal radiation therapy plan for glioblastoma patient (A), superimposed to fluid-attenuated inversion recovery images, where postoperative glioblastoma is presented (white arrow) (B), and the irradiation dose distribution plan (C), with different isodose lines dividing the areas presented in different colors [red area 1.8 Gy daily/total delivered dose 59.4 Gy (red arrow); green area 1.2 Gy daily/total delivered dose 39.6 Gy (green arrow); blue area 0.6 Gy daily/total delivered dose 19.8 Gy (blue arrow)].

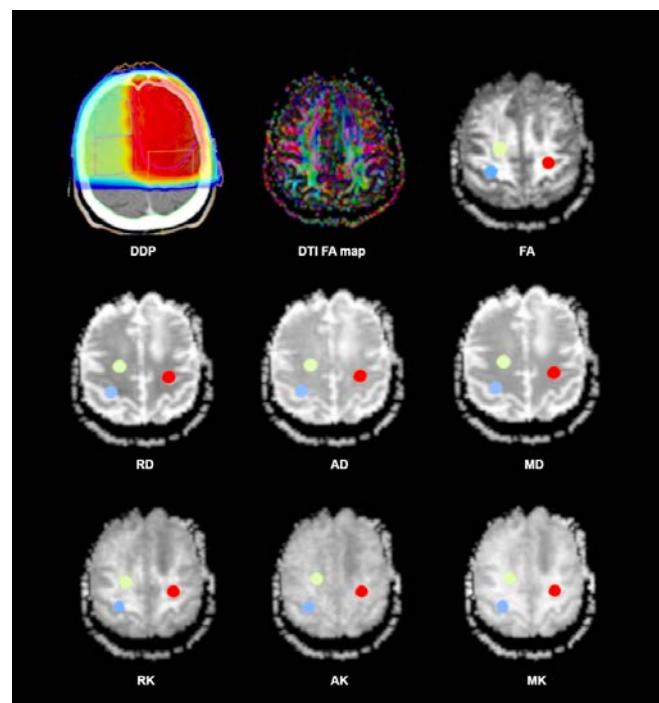
T1-weighted isotropic sequence before and after paramagnetic gadolinium-based contrast administration, and axial two-dimensional T2-weighted and FLAIR sequences (both 30 slices, 0.9×0.9 in-plane resolution, slice thickness 4 mm). For DWI acquisition, three b-values (0, 1,000, and 2,000 s/mm²) were applied along 30 diffusion-encoding directions, with 40 axial slices and an isotropic resolution of 3 mm, to calculate diffusion and kurtosis tensors. Based on these data, we measured and analyzed the following DTI parameters: FA, RD, AD, and MD. In addition, the corresponding DKI parameters—RK, AK, and MK—were also evaluated.

Only recently presented, kurtosis FA (KFA), as a potentially more accurate imaging biomarker than FA, has not been calculated or analyzed⁴⁸.

Image processing and region of data analysis

To generate FA, RD, AD, MD, RK, AK, and MK maps, the diffusional kurtosis estimator freely available software (version 2.5.1; Medical University of South Carolina, Charleston, South Carolina; <https://www.nitrc.org/projects/dke/>)²² has been used.

ROI were manually selected by two radiologists with more than 10 years of experience, who assessed the maps simultaneously in a joint session, reaching a consensus on where to place the ROI 1 (total irradiation dose of 59.4 Gy), ROI 2 (total irradiation dose of 39.6 Gy), and ROI 3 (total


irradiation dose of 19.8 Gy). Each ROI was of the same size, and in each of them all observed DTI parameters (FA, RD, AD, MD) and all DKI parameters (RK, AK, MK) were separately measured on the same spots in all three observed areas in three different time points: immediately before CRT treatment, after 16 delivered fractions, and after 33 delivered fractions (immediately after the end of CRT treatment) (Figure 2).

Statistical analysis

Changes in DTI and DKI parameters at different time points were analyzed using a statistical data analysis software system (StatSoft, Inc., version 12.0.1133.15; www.statsoft.com). Student's *t*-test was executed to estimate pairwise differences between average values obtained from three different imaging time-points. Average cross-subject values of measured DTI and DKI parameters were used to identify the increasing or decreasing trend of the parameters in observing time points for each ROI.

Results

Statistical differences in observed DTI and DKI parameters over time, during and after CRT treatment, compared with the initial values measured before and during treatment, are presented in Table 1.

- **ROI 1** - 1.8 Gy daily fraction; overall delivered dose 59.4 Gy
- **ROI 2** - 1.2 Gy daily fraction; overall delivered dose 39.6 Gy
- **ROI 3** - 0.6 Gy daily fraction; overall delivered dose 19.8 Gy

Fig. 2 – Region of interest (ROI) identification according to co-registered radiotherapy dose distribution plan (DDP) in axial plane on different diffusion maps for measurement of diffusion tensor imaging (DTI) parameters: fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD), and diffusion kurtosis imaging (DKI) parameters: radial kurtosis (RK), axial kurtosis (AK), and mean kurtosis (MK) in areas with different delivered doses.

Table 1

Statistical differences of DTI and DKI parameters average values in predefined ROIs
between observed time points before, during, and immediately after chemoradiotherapy

Parameter	ROI 1 (1.8 Gy/fraction)			ROI 2 (1.2 Gy/fraction)			ROI 3 (0.6 Gy/fraction)		
	16/0	33/0	33/16	16/0	33/0	33/16	16/0	33/0	33/16
DTI									
FA	0.348–0.396; < 0.05	0.304–0.396; < 0.01	0.304–0.348; < 0.05	0.324–0.368; < 0.05	0.318–0.368; < 0.05	0.318–0.324; > 0.05	0.361–0.364; > 0.05	0.359–0.364; > 0.05	0.359–0.361; > 0.05
RD	0.881–0.824; < 0.05	0.934–0.824; < 0.01	0.934–0.881; < 0.05	0.869–0.825; < 0.05	0.772–0.825; < 0.05	0.772–0.869; < 0.01	0.808–0.811; > 0.05	0.798–0.811; > 0.05	0.798–0.808; > 0.05
AD	1.489–1.376; < 0.05	1.501–1.376; < 0.05	1.501–1.489; > 0.05	1.511–1.399; < 0.05	1.288–1.399; < 0.05	1.288–1.511; < 0.01	1.387–1.377; > 0.05	1.391–1.377; > 0.05	1.391–1.387; > 0.05
MD	1.129–0.998; < 0.05	1.244–0.987; < 0.01	1.244–1.129; < 0.05	1.2221–1.102; < 0.05	0.979–1.102; < 0.05	0.979–1.221; < 0.01	0.992–1.012; > 0.05	0.983–1.012; > 0.05	0.983–0.992; > 0.05
DKI									
RK	1.066–1.188; < 0.05	0.951–1.188; < 0.01	0.951–1.066; < 0.05	1.068–1.214; < 0.05	0.915–1.214; < 0.01	0.915–1.068; < 0.05	1.189–1.201; > 0.05	1.176–1.201; > 0.05	1.176–1.189; > 0.05
AK	0.675–0.799; < 0.05	0.661–0.799; < 0.05	0.601–0.675; > 0.05	0.761–0.783; > 0.05	0.774–0.783; > 0.05	0.774–0.761; > 0.05	0.776–0.791; > 0.05	0.762–0.791; > 0.05	0.762–0.776; > 0.05
MK	1.301–0.997; < 0.05	1.329–0.997; < 0.05	1.329–1.301; > 0.05	1.229–0.998; < 0.05	1.199–0.998; < 0.05	1.199–1.229; > 0.05	0.963–0.951; > 0.05	0.975–0.951; > 0.05	0.975–0.963; > 0.05

For abbreviations, see Figure 2.

All values are given as mean values. Statistical significance was set at $p < 0.05$.

Note. 16/0, 33/0, and 33/16 represent compared measurements at different time points – before, during, and after treatment: 16 vs. 0 fractions, 33 vs. 0 fractions, and 33 vs. 16 fractions.

Within ROI 1, FA values were significantly lower in normal-appearing white matter, both after delivering 16 (1.8 Gy/fraction, total dose 28.8 Gy) and 33 fractions (1.8 Gy/fraction, total dose 59.4 Gy), compared with non-irradiated white matter before the irradiation. Average RD, AD, and MD values, as well as diffusion MK, showed a significant increase when comparing the same measurement time points within ROI 1. Regarding the DKI parameters RK and AK, a decrease in the values in the function of time was observed, and significant changes compared with pre-therapy values were noted both after 16 and 33 fractions. In ROI 1, only FA, RD, MD, and RK demonstrated a significant decrease between 16 and 33 fractions, whereas AD, AK, and MK did not show any significant changes between these time points.

In ROI 2, FA values were significantly lower after delivering 16 fractions (1.2 Gy/fraction, total dose 19.2 Gy) and 33 fractions (1.8 Gy/fraction, total dose 39.6 Gy) compared with pre-treatment values, with no significant differences between 16 and 33 fractions. Average RD, AD, and MD values increased significantly after delivering 16 fractions, but significantly decreased between 16 and 33 delivered fractions. Average RK values significantly decreased after 16 and 33 fractions within ROI 2, compared with the measured values before the CRT, while AK values remained without any significant changes. Average MK increased significantly after 16 fractions compared with pre-treatment values in ROI 2, then decreased significantly after 33 fractions. No significant changes in FA, AK, and MK values were observed between delivered 16 and 33 fractions in ROI 2.

Similar to the DTI parameters (FA, RD, AD, and MD), the DKI parameters (RK, AK, and MK) in ROI 3 did not exhibit any significant changes of the average values at the observed time points, neither after 16 delivered fractions (0.6 Gy/fraction, total dose 9.6 Gy) nor after 33 fractions (0.6 Gy/fraction, total dose 19.8 Gy), nor between the delivered 16 and 33 fractions.

Discussion

Since the initial introduction of molecular neuro-oncology into clinical practice⁴⁹, the impact of DTI metrics on the detection of brain tissue alteration of different origins, including irradiation-induced white matter injury, became the subject of research^{7, 16, 17, 23, 35}. Fewer studies included non-Gaussian DKI metrics to detect early changes in brain parenchyma during CRT treatment^{8, 14, 23, 50}. As the most prominent early indicators, the results of our study have demonstrated decrease of FA, and increase of MD and MK values in the normal appearing white matter, both during and immediately after CRT treatment in the brain areas with delivered dose of 28.8 Gy after 16 fractions, and total dose of 59.4 Gy after 33 fractions, and these results are coherent with the results of several other published studies^{14, 19}. Both decreased FA and increased MD and MK values are considered as the consequences of demyelination, axonal loss, and/or transient cerebral edema. On the contrary, edema resolution, oligodendrocyte regeneration, and remyelination should result in increased FA and MD values⁵¹. As reported

in the literature¹⁹, in response to RTh, RD values typically increase, while AD values have been shown to either increase^{10, 35, 42} or decrease^{38, 41, 52}. In the brain areas with the delivered daily dose (DDD) of 1.8 Gy and a total dose of 59.4 Gy during and after CRT, both after delivering 16 and 33 fractions, an increase in RD values, correlating with demyelination, and AD values, which indicate axonal loss and reactive astrogliosis, was noticed^{51, 53}.

Unexpectedly, a decrease in RK and AK values was recorded at the same measurement time points in the same areas, even though they were expected to follow trends similar to those of RD and AD. Although the observed decreases in RK and AK values were unanticipated, they may potentially reflect transient/temporary microstructural alterations in white matter following irradiation, possibly related to processes such as edema resolution, axonal swelling, or reactive gliosis. Yet, the possibility of an unintentional computational error or another form of oversight cannot be entirely excluded. Nonetheless, the assumed explanation for the observed discrepancy between DTI- and DKI-derived parameters remains speculative and warrants validation through further investigation.

In a few published studies, we noticed a certain analogy in the discrepancy of the results perceived in the form of decreased RK and AK values in our study. Namely, opposite to the expected results of the majority of other studies, they have measured decreased MD, RD, and AD and slightly increased FA in patients after the end of CRT, though not as an early result, but in a follow-up period after 3 to 24 months^{38, 41}. This, in turn, underscores the need for longer-term follow-up to clarify the sustained significance and interpretative value of both DTI and DKI metrics in GB CRT over time.

Although most conducted studies point out demyelination as the probable dominant consequence induced by RTh¹⁹, Raschke et al.³⁸ concluded that neither edema nor demyelination could be a plausible reason for the decrease in diffusion. They speculated that the decreased diffusion could be the result of axonal swelling, possibly due to tissue oxygenation and vascular changes that occur after irradiation. Revealing reductions in RD and AD values after irradiation, Zhu et al.⁴¹ proposed that RD decreases could be a sign of remyelination. In contrast, the AD decrease could be linked to astrogliosis, which may explain our results, but still does not provide a proper background for the opposite trends between RD and AD and between RK and AK in the area with a delivered total dose of 59.4 Gy, both after 16 and 33 fractions.

Still, recent investigations have revealed microstructural tissue changes not only in the hemisphere where GB is located, but also in the contralateral hemisphere, which differ even between right-sided and left-sided GB location⁵⁴. Since this recently published feature was not considered in our study design, we strongly believe that further investigations to gain deeper insight into microstructural white matter alterations in the presence of high-grade glioma, or during and after irradiation, would be beneficial.

We found that AD, AK, and MK did not show a significant difference between 16 and 33 fractions in the area of DDD of 1.8 Gy and a total dose of 59.4 Gy. That does not

necessarily reflect a better sensitivity of MD compared to MK. The lack of statistical significance between these two time points may be explained by the higher susceptibility of MK to early irradiation-induced changes, leading to faster and more stable increases in MK values compared with MD.

In the treated brain areas with a DDD of 1.2 Gy, and a total dose of 39.6 Gy, where decrease of FA and an initial increase of RD, AD, and MD, but also MK, have been noted after 16 delivered fractions, with a later decrease of values after 33 delivered fractions. That leaves us in a belief that the initial increase and later decrease of RD, AD, MD, and MK suggest transient edema as a dominant mechanism of early white matter tissue injury, while the decrease of RK and AK both after delivering 16 and 33 fractions suggest that demyelination is included in the white matter alterations profile, rather than axonal impairment. Some authors suggest that the biological alterations are most likely occurring within the extracellular environment due to increased vascular permeability and/or reactive neuroinflammatory processes after irradiation^{19, 42}.

These findings are consistent with the statement that kurtosis measure is less sensitive to free fluid contamination, since the interpretability of DKI parameters depends on the accuracy of tensor estimation. Motion, noise, and/or imaging artifacts can cause significant errors, up to the level of physical/biological implausibility^{15, 20-22}. That actually corresponds to our results, suggesting that DKI metrics were slightly less susceptible to radiation-induced edema detection than measured DTI parameters. Dose and time-dependent changes in irradiated white matter that have been found to correlate with several other studies' results^{17, 19, 42}, where measured MD, AD, RD, and MK increase and FA decrease appear earlier in areas receiving higher radiation doses. Hope et al.³⁵ found that MD, RD, and AD significantly increased in brain regions receiving more than 41 Gy in total dose, compared to those receiving less than 12 Gy in total, which corresponds with our results.

We found that daily doses of 0.6 Gy and total delivered dose of 19.8 Gy did not cause any significant changes in DTI or DKI metrics. This means that white matter alterations during and after CRT treatment could not be identified, neither after 16 delivered fractions, nor after 33 delivered fractions. Therefore, we may speculate that the threshold for detecting early white matter injury during or immediately after CRT treatment could actually lie somewhere above 20 Gy. Still, it should be emphasized that in several studies, changes in white matter structure for smaller delivered doses have been reported^{41, 55}, though not immediately, but later, in the period of 9 to 11 months after CRT^{38, 42}.

Although our study design includes imaging before, during, and immediately after CRT, it does not extend to post-treatment follow-up. This represents a clear limitation, as it prevents us from definitively characterizing the observed changes in DTI and DKI metrics as either transient and/or reversible effects, or as predictors of late or delayed radiation injury.

As late radiation injury was beyond the scope of the present investigation, we believe the current findings should

be interpreted solely as indicative of early, and potentially transient effects of irradiation.

We would also like to emphasize that the present study did not employ repeated-measures analysis of variance or multivariate analyses, which might have provided a more robust statistical framework for assessing longitudinal changes and addressing multiple comparisons. As re-analysis is not feasible at this stage, this limitation is duly acknowledged and should be taken into consideration when interpreting the findings.

Accordingly, further comprehensive studies are warranted to fully elucidate the potential of DTI and DKI metrics as reliable biomarkers of white matter microstructural alterations during and after CRT in GB patients, in relation to time and radiation dose.

While several studies have investigated the association between neurocognitive impairment and/or clinical outcomes and both early and late radiation-induced brain injury⁵⁶⁻⁵⁹, our study did not address this interconnection, which represents a limitation with respect to its translational relevance. Future investigations that integrate neurocognitive assessment with clinical outcomes during and after GB CRT would significantly enhance the clinical utility and applicability of DTI and DKI biomarkers in real-world neuro-oncological settings.

Recently published studies incorporating radiomics into the assessment of white matter alterations during CRT may contribute to a more profound comprehension of the sophisticated and interrelated pattern of radiation-induced brain injury^{60, 61}. Furthermore, emerging and ongoing investigations focusing on cellular and molecular responses of brain tissue to specific RTh, including proton therapy, as well as the integration of artificial intelligence in the evaluation of irradiated white matter, are expected to offer novel insights into the pathophysiology of radiation-induced changes in the brain tissue⁶²⁻⁶⁵.

Conclusion

Diffusion tensor imaging and diffusion kurtosis imaging metrics are susceptible to white matter alterations during and after chemoradiotherapy treatment. These metrics provide valuable insight into early irradiation-induced changes, even within normal-appearing white matter, and may prove useful as structural imaging biomarkers for identifying early, and potentially transient and/or reversible microstructural alterations related to irradiation. The application of diffusion tensor imaging and diffusion kurtosis imaging holds considerable potential to broaden our understanding of the complex dynamics underlying early microstructural alterations in white matter in response to glioblastoma chemoradiotherapy, potentially influencing future diagnostic and clinical strategies. Given that late radiation effects were not addressed within the scope of our present investigation, further longitudinal studies with extended follow-up periods would be essential to validate the potential of diffusion tensor imaging and diffusion kurtosis imaging metrics as predictors of late or delayed radiation-induced brain injury.

Acknowledgement

The authors acknowledge the financial support of the Provincial Secretariat for Science and Technology Development within the project “Multiparametric structural

and metabolic imaging of the intratumorous bioarchitectonics in the function of the diagnosis and therapy improvement in patients with malignant lung and central nervous system tumours”; Grant No. 142-451-2433/2018.

R E F E R E N C E S

1. Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. *J Clin Oncol* 2007; 25(26): 4127–36. DOI: 10.1200/JCO.2007.11.8554.
2. Hanna C, Lawrie TA, Rogožinska E, Kernohan A, Jefferies S, Bulbeck H, et al. Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis. *Cochrane Database Syst Rev* 2020; 3(3): CD013261. DOI: 10.1002/14651858.CD013261.pub2.
3. Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and prediction of glioblastoma therapy response: challenges and opportunities. *Brain* 2023; 146(4): 1281–98. DOI: 10.1093/brain/awac450.
4. Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, et al. Glioblastoma Therapy: Past, Present and Future. *Int J Mol Sci* 2024; 25(5): 2529. DOI: 10.3390/ijms25052529.
5. De Groot JD, van Dijken BRJ, van der Weide HL, Enting RH, van der Hoorn A. Voxel based morphometry-detected white matter volume loss after multi-modality treatment in high grade glioma patients. *PLoS One* 2023; 18(5): e0275077. DOI: 10.1371/journal.pone.0275077.
6. Rafanan J, Ghani N, Kazemini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. *Int J Mol Sci* 2025; 26(3): 917. DOI: 10.3390/ijms26030917.
7. Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L, et al. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. *Int J Radiat Oncol Biol Phys* 2008; 70(4): 1002–10. DOI: 10.1016/j.ijrobp.2007.08.020.
8. Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryainov SA, Bykanov AE, et al. Perifocal Zone of Brain Gliomas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. *Cancers (Basel)* 2023; 15(10): 2760. DOI: 10.3390/cancers15102760.
9. Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, et al. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. *Front Oncol* 2022; 12: 998069. DOI: 10.3389/fonc.2022.998069.
10. Lohmeier J, Radbruch H, Brenner W, Hamm B, Hansen B, Tietze A, et al. Detection of recurrent high-grade glioma using microstructure characteristics of distinct metabolic compartments in a multimodal and integrative 18F-FET PET/fast-DKI approach. *Eur Radiol* 2024; 34(4): 2487–99. DOI: 10.1007/s00330-023-10141-0.
11. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. *Nat Rev Neurosci* 2003; 4(6): 469–80. DOI: 10.1038/nrn1119.
12. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. *J Magn Reson Imaging* 2001; 13(4): 534–46. DOI: 10.1002/jmri.1076.
13. Le Bihan D, Ima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. *PLoS Biol* 2015; 13(7): e1002203. Erratum in: *PLoS Biol* 2015; 13(9): e1002246. DOI: 10.1371/journal.pbio.1002246.
14. Lin L, Bhawana R, Xue Y, Duan Q, Jiang R, Chen H, et al. Comparative Analysis of Diffusional Kurtosis Imaging, Diffusion Tensor Imaging, and Diffusion-Weighted Imaging in Grading and Assessing Cellular Proliferation of Meningiomas. *AJNR Am J Neuroradiol* 2018; 39(6): 1032–8. DOI: 10.3174/ajnr.A5662.
15. Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. *Br J Radiol* 2023; 96(1141): 20211232. DOI: 10.1259/bjr.20211232.
16. Brancato V, Nuzzo S, Tramontano L, Condorelli G, Salvatore M, Cavaliere C. Predicting Survival in Glioblastoma Patients Using Diffusion MR Imaging Metrics-A Systematic Review. *Cancers (Basel)* 2020; 12(10): 2858. DOI: 10.3390/cancers12102858.
17. Manan AA, Yahya NA, Taib NHM, Idris Z, Manan HA. The Assessment of White Matter Integrity Alteration Pattern in Patients with Brain Tumor Utilizing Diffusion Tensor Imaging: A Systematic Review. *Cancers (Basel)* 2023; 15(13): 3326. DOI: 10.3390/cancers15133326.
18. Scola E, Del Vecchio G, Busti G, Bianchi A, Desideri I, Gadda D, et al. Conventional and Advanced Magnetic Resonance Imaging Assessment of Non-Enhancing Peritumoral Area in Brain Tumor. *Cancers (Basel)* 2023; 15(11): 2992. DOI: 10.3390/cancers15112992.
19. Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. *Cancers (Basel)* 2021; 13(7): 1573. DOI: 10.3390/cancers13071573.
20. Jensen JH, Helpern JA, Ramani A, Lu H, Kacynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. *Magn Reson Med* 2005; 53(6): 1432–40. DOI: 10.1002/mrm.20508.
21. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. *NMR Biomed* 2010; 23(7): 698–710. DOI: 10.1002/nbm.1518.
22. Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. *Magn Reson Med* 2011; 65(3): 823–36. Erratum in: *Magn Reson Med* 2011; 65(5): 1507. DOI: 10.1002/mrm.22655
23. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. *NMR Biomed* 2010; 23(7): 836–48. DOI: 10.1002/nbm.1506.
24. Goryawala M, Mellon EA, Shim H, Maudsley AA. Mapping early tumor response to radiotherapy using diffusion kurtosis imaging. *Neuroradiol J* 2023; 36(2): 198–205. DOI: 10.1177/19714009221122204.
25. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, et al. Gliomas: diffusion kurtosis MR imaging in grading. *Radiology* 2012; 263(2): 492–501. DOI: 10.1148/radiol.12110927.
26. Van Cauter S, De Keyzer F, Sima DM, Sava AC, D'Arco F, Veraart J, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. *Neuro Oncol* 2014; 16(7): 1010–21. DOI: 10.1093/neuonc/not304.
27. Abdalla G, Dixon L, Sanverdi E, Machado PM, Kwong JSW, Panovska-Griffiths J, et al. The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with

critical appraisal and meta-analysis. *Neuroradiology* 2020; 62(7): 791–802. DOI: 10.1007/s00234-020-02425-9.

28. *Tan AC, Ashley DM, López GY, Malinžak M, Friedman HS, Khasraw M.* Management of glioblastoma: State of the art and future directions. *CA Cancer J Clin* 2020; 70(4): 299–312. DOI: 10.3322/caac.21613.

29. *Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al.* Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. *Neuro Oncol* 2020; 22(8): 1073–113. DOI: 10.1093/neuonc/noaa106.

30. *Wang YX, King AD, Zhou H, Leung SF, Abrigo J, Chan YL, et al.* Evolution of radiation-induced brain injury: MR imaging-based study. *Radiology* 2010; 254(1): 210–8. DOI: 10.1148/radiol.09090428.

31. *Sub CH, Kim HS, Jung SC, Choi CG, Kim SJ.* Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis. *Eur Radiol* 2018; 28(6): 2628–38. DOI: 10.1007/s00330-017-5262-5.

32. *Şabın S, Ertekin E, Şabın T, Özsunar Y.* Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. *Magn Reson Mater Phy* 2022; 35(1): 153–62. DOI: 10.1007/s10334-021-00990-5.

33. *Andrews RN, Dugan GO, Peiffer AM, Hawkins GA, Hanbury DB, Bourland JD, et al.* White Matter is the Predilection Site of Late-Delayed Radiation-Induced Brain Injury in Non-Human Primates. *Radiat Res* 2019; 191(3): 217–31. DOI: 10.1667/RR15263.1.

34. *Pan J, Qiu Z, Fu G, Liang J, Li Y, Feng Y, et al.* Non-complete recovery of temporal lobe white matter diffusion metrics at one year Post-Radiotherapy: Implications for Radiation-Induced necrosis risk. *Radiother Oncol* 2024; 199: 110420. DOI: 10.1016/j.radonc.2024.110420.

35. *Hope TR, Vardal J, Bjørnerud A, Larsson C, Arnesen MR, Salo RA, et al.* Serial diffusion tensor imaging for early detection of radiation-induced injuries to normal-appearing white matter in high-grade glioma patients. *J Magn Reson Imaging* 2015; 41(2): 414–23. DOI: 10.1002/jmri.24533.

36. *Tringale KR, Nguyen T, Bahrami N, Marshall DC, Leyden KM, Karunamuni R, et al.* Identifying early diffusion imaging biomarkers of regional white matter injury as indicators of executive function decline following brain radiotherapy: A prospective clinical trial in primary brain tumor patients. *Radiother Oncol* 2019; 132: 27–33. DOI: 10.1016/j.radonc.2018.11.018.

37. *Rydelius A, Bengzon J, Engelman S, Kinbult S, Englund E, Niksson M, et al.* Predictive value of diffusion MRI-based parametric response mapping for prognosis and treatment response in glioblastoma. *Magn Reson Imaging* 2023; 104: 88–96. DOI: 10.1016/j.mri.2023.09.005.

38. *Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, et al.* Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. *Radiother Oncol* 2019; 140: 110–5. DOI: 10.1016/j.radonc.2019.06.022.

39. *Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, et al.* Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. *Radiother Oncol* 2024; 199: 110459. DOI: 10.1016/j.radonc.2024.110459.

40. *Ljusberg A, Blystad I, Lundberg P, Adolfsson E, Tisell A.* Radiation-dependent demyelination in normal appearing white matter in glioma patients, determined using quantitative magnetic resonance imaging. *Phys Imaging Radiat Oncol* 2023; 27: 100451. DOI: 10.1016/j.phro.2023.100451.

41. *Zhu T, Chapman CH, Tsien C, Kim M, Spratt DE, Lawrence TS, et al.* Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging. *Int J Radiat Oncol Biol Phys* 2016; 96(3): 696–705. DOI: 10.1016/j.ijrobp.2016.07.010.

42. *Connor M, Karunamuni R, McDonald C, White N, Pettersson N, Moiseenko V, et al.* Dose-dependent white matter damage after brain radiotherapy. *Radiother Oncol* 2016; 121(2): 209–16. DOI: 10.1016/j.radonc.2016.10.003.

43. *Djan I, Petrović B, Erak M, Nikolić I, Lučić S.* Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation. *Vojnosanit Pregl* 2013; 70(8): 735–9. DOI: 10.2298/vsp110404001d.

44. *Cabrera AR, Kirkpatrick JP, Fireash JB, Shih HA, Koay EJ, Lutz S, et al.* Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. *Pract Radiat Oncol* 2016; 6(4): 217–25. DOI: 10.1016/j.prro.2016.03.007.

45. *Kruser TJ, Bosch WR, Badiyan SN, Bori JA, Ghia AJ, Kim MM, et al.* NRG brain tumor specialists consensus guidelines for glioblastoma contouring. *J Neurooncol* 2019; 143(1): 157–66. DOI: 10.1007/s11060-019-03152-9.

46. *Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Gallidikas N, et al.* ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. *Radiother Oncol* 2023; 184: 109663. DOI: 10.1016/j.radonc.2023.109663.

47. *Mir R, Kelly SM, Xiao Y, Moore A, Clark CH, Clemente E, et al.* Organ at risk delineation for radiation therapy clinical trials: Global Harmonization Group consensus guidelines. *Radiother Oncol* 2020; 150: 30–9. DOI: 10.1016/j.radonc.2020.05.038.

48. *Hansen B.* An Introduction to Kurtosis Fractional Anisotropy. *Am J Neuroradiol* 2019; 40(10): 1638–41. DOI: 10.3174/ajnr.A6235.

49. *Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R.* Molecular neuro-oncology in clinical practice: a new horizon. *Lancet Oncol* 2013; 14(9): e370–9. Erratum in: *Lancet Oncol* 2015; 16(5): e199. DOI: 10.1016/S1470-2045(15)70216-0.

50. *Chakhtayan A, Woodworth DC, Harris RJ, Lai A, Nghiemphu PL, Lian LM, et al.* Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma. *J Neurooncol* 2018; 139(3): 651–9. DOI: 10.1007/s11060-018-2910-9.

51. *Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, et al.* Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. *Eur Radiol* 2022; 32(1): 319–30. DOI: 10.1007/s00330-021-08164-6.

52. *Voon NS, Lau FN, Zakaria R, Md Rani SA, Ismail F, Manan HA, et al.* MRI-based brain structural changes following radiotherapy of Nasopharyngeal Carcinoma: A systematic review. *Cancer Radiother* 2021; 25(1): 62–71. DOI: 10.1016/j.canrad.2020.07.008.

53. *Xie X, Feng M, Rong Y, Hu J, Zhou W, Li Y, et al.* Whole brain atlas-based diffusion kurtosis imaging parameters for the evaluation of multiple cognitive-related brain microstructure injuries after radiotherapy in lung cancer patients with brain metastasis. *Quant Imaging Med Surg* 2023; 13(8): 5321–32. DOI: 10.21037/qims-22-1376.

54. *Genç B, Aslan K, Özçağlayan A, İncesu L.* Microstructural abnormalities in the contralateral normal-appearing white matter of glioblastoma patients evaluated with advanced diffusion imaging. *Magn Reson Med Sci* 2024; 23(4): 479–86. DOI: 10.2463/mrms.mp.2023-0054.

55. *He L, Chen M, Li H, Shi X, Qiu Z, Xu X.* Differentiation between high-grade gliomas and solitary brain metastases based on multidiffusion MRI model quantitative analysis. *Front Oncol* 2024; 14: 1401748. DOI: 10.3389/fonc.2024.1401748.

56. Rübe CE, Raid S, Palm J, Rübe C. Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. *Cancers (Basel)* 2023; 15(11): 2999. DOI: 10.3390/cancers15112999.

57. Zegers CML, Offermann C, Dijkstra J, Comptier I, Hoebers FJP, de Ryckxcher D, et al. Clinical implementation of standardized neurocognitive assessment before and after radiation to the brain. *Clin Transl Radiat Oncol* 2023; 42: 100664. DOI: 10.1016/j.ctro.2023.100664.

58. Mesny E, Jacob J, Noël G, Bernier MO, Ricard D. Specific radiosensitivity of brain structures (areas or regions) and cognitive impairment after focal or whole brain radiotherapy: A review. *Cancer Radiother* 2025; 29(3): 104625. DOI: 10.1016/j.canrad.2025.104625.

59. Zhu L, Ma Y, Kong A, Wu X, Ren Y, Zhou W, et al. Non-invasive and sensitive MRI assessment of radiation-induced cognitive dysfunction via voxel-based morphological and functional connectivity. *Acta Neuropathol Commun* 2025; 13(1): 180. DOI: 10.1186/s40478-025-02092-y.

60. Chen M, Wang L, Gong G, Yin Y, Wang P. Quantitative study of the changes in brain white matter before and after radiotherapy by applying multi-sequence MR radiomics. *BMC Med Imaging* 2022; 22(1): 86. DOI: 10.1186/s12880-022-00816-3.

61. Alsabri MS, Al-Mubarak HF, Qaisi A, Albulail AA, AlMansour AGM, Madkhali Y, et al. MRI Delta Radiomics to Track Early Changes in Tumor Following Radiation: Application in Glioblastoma Mouse Model. *Biomedicines* 2025; 13(4): 815. DOI:10.3390/biomedicines13040815

62. Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. *CNS Neurosci Ther* 2024; 30(6): e14794. DOI: 10.1111/cns.14794.

63. Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, et al. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. *Oncologist* 2024; 29(12): e1748–61. DOI: 10.1093/oncolo/oyae195.

64. Franco D, Granata V, Fusco R, Grassi R, Nardone V, Lombardi L, et al. Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: preliminary data using a quantitative tool. *Radiol Med* 2023; 128(7): 813–27. DOI: 10.1007/s11547-023-01655-0.

65. Zhao J, Vaios E, Yang Z, Lu K, Floyd S, Yang D, et al. Radiogenomic explainable AI with neural ordinary differential equation for identifying post-SRS brain metastasis radionecrosis. *Med Phys* 2025; 52(4): 2661–74. DOI: 10.1002/mp.17635.

Received on May 25, 2025

Revised on September 19, 2025

Revised on October 29, 2025

Accepted on November 5, 2025

Online First December 2025

Comparison of antimicrobial and thrombolytic central venous catheter lock solutions in preventing catheter-related complications in hemodialysis: a randomized controlled trial

Poređenje antimikrobnih i trombolitičkih rastvora za zatvaranje centralnih venskih katetera u prevenciji komplikacija povezanih sa kateterima kod bolesnika na hemodializu: randomizovano kontrolisano ispitivanje

Tijana Azaševac*†, Gordana Stražmešter Majstorović†, Bojana Ljubičić*‡, Vladimir Djurović*†, Milica Knežević§, Mira Marković†

*University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; University Clinical Center of Vojvodina, †Clinic for Nephrology and Clinical Immunology, ‡Emergency Center, Department of Emergency Internal Medicine, §Clinic for Gastroenterology and Hepatology, Novi Sad, Serbia

Abstract

Background/Aim. Central venous catheters (CVC) in hemodialysis (HD) patients are associated with serious complications, particularly catheter-related bloodstream infection (CRBSI) and thrombosis, leading to increased morbidity and mortality. The aim of this study was to evaluate the effectiveness of three different catheter lock solutions in preventing major catheter-related complications. **Methods.** This prospective, randomized, controlled, single-center study, conducted between June 2018 and June 2023, included 96 adult HD patients. Depending on the solutions they received, the patients were equally divided into three groups: gentamicin-citrate twice weekly plus tauridine/urokinase after the third weekly session (TAURO); gentamicin-citrate three times weekly (GENTAM); unfractionated heparin 5,000 international units/mL three times weekly (HEPARIN). Lock solutions were administered for a minimum of three months post-CVC insertion and continued until catheter removal. Measured outcomes included CRBSI incidence, catheter thrombosis, and adverse events.

Apstrakt

Uvod/Cilj. Centralni venski kateteri (CVK) kod bolesnika na hemodializu (HD) povezani su sa ozbiljnim komplikacijama, posebno bakterijemijom povezanim sa kateterom (BPSK) i trombozom, što dovodi do povećanog morbiditeta i mortaliteta. Cilj rada bio je da se proceni efikasnost tri različita rastvora za zatvaranje katetera u sprečavanju većih komplikacija povezanih sa kateterom. **Metode.** Ova prospektivna, randomizovana, kontrolisana studija sprovedena u jednom centru, od juna 2018. do juna

Results. Over the course of 10,770 catheter-days, eight CRBSI episodes were recorded, with *Staphylococcus aureus* as the most common pathogen (50%). The incidence of CRBSI (per 1,000 catheter-days) was 0.27 in the TAURO group, 0.83 in the GENTAM group, and 1.15 in the HEPARIN group, without statistical significance ($p = 0.526$). Thrombosis incidence was similar across groups (1.09–1.15; $p = 0.90$). Cox proportional hazards analysis revealed no significant differences, although the TAURO group demonstrated a trend toward lower CRBSI risk compared to the HEPARIN group (hazard ratio = 0.236; 95% confidence interval 0.026–2.116). **Conclusion.** None of the evaluated lock regimens significantly reduced the risk of CRBSI or thrombosis. Nonetheless, the lowest CRBSI incidence was observed in the TAURO group, suggesting a potential benefit that warrants confirmation in larger, multicenter studies.

Keywords:

anticoagulants; bacteremia; catheter-related infections; catheterization, central venous; fibrinolytic agents; renal dialysis; thrombosis.

2023. godine, obuhvatila je 96 odraslih bolesnika na HD. U zavisnosti od rastvora koji su primali, bolesnici su bili ravnomerno podeljeni u tri različite grupe: gentamicin-citrat dva puta nedeljno uz taurolidin/urokinazu nakon treće nedeljne dijalize (TAURO); gentamicin-citrat tri puta nedeljno (GENTAM); nefrakcionsani heparin 5 000 internacionalnih jedinica/mL tri puta nedeljno (HEPARIN). Rastvori za zatvaranje katetera su primenjivani najmanje tri meseca nakon plasiranja CVK i njihova primena je nastavljena do uklanjanja katetera. Praćeni ishodi obuhvatili su incidenciju BPSK, trombozu

katetera i neželjene događaje. **Rezultati.** Tokom 10 770 „kateter-dana“ registrovano je osam epizoda BPSK, a najčešći uzročnik bio je *Staphylococcus aureus* (50%). Incidencija BPSK (na 1 000 „kateter-dana“) bila je 0,27 u TAURO grupi, 0,83 u GENTAM grupi i 1,15 u HEPARIN grupi, bez statističke značajnosti ($p = 0,526$). Incidencija tromboze katetera bila je slična u svim grupama (1,09–1,15; $p = 0,990$). Koksova analiza proporcionalnih rizika nije pokazala značajne razlike, iako je TAURO grupa pokazala trend ka manjem riziku od BPSK u poređenju sa HEPARIN grupom (*hazard*

ratio = 0,236; 95% interval poverenja 0,026–2,116). **Zaključak.** Nijedan ispitivani režim rastvora za zatvaranje katetera nije značajno smanjio rizik od BPSK ili tromboze. Ipak, najniža incidencija BPSK zabeležena je u TAURO grupi, što ukazuje na potencijalnu korist koju treba potvrditi u većim, multicentričnim studijama.

Ključne reči:

antikoagulansi; bakterijemija; kateter, povezane infekcije; kateterizacija, centralna, venska; fibrinolitici; bubreg, dijaliza; tromboza.

Introduction

Vascular access is essential for effective hemodialysis (HD), yet it also represents its most fragile component. While arteriovenous fistulas (AVF) remain the gold standard due to their superior long-term outcomes, temporary central venous catheters (CVCs) for dialysis are still widely used in incident HD patients in Serbia, with a prevalence of 63.5% according to data from the Serbian National Vascular Surgery Registry, due to their ability to provide immediate vascular access¹. However, frequent failures in primary AVF creation and the rise in marginal fistulas have resulted in many patients depending on prolonged CVC use. Long-term use of CVC leads to complications, the most common of which are CVC dysfunction and thrombosis, and a high rate of catheter-related bloodstream infections (CRBSI)^{2,3}. The risk of sepsis in patients dialyzed *via* a CVC is two to five times higher than in patients with AVF and arteriovenous grafts (AVG), and initial septic episodes can double the incidence of adverse cardiovascular events such as myocardial infarction and congestive heart failure^{3,4}. These complications often necessitate catheter replacement, further limiting available vascular access options.

Preventive strategies for catheter-related complications have traditionally focused on using unfractionated heparin as a lock solution. However, high concentrations [5,000–10,000 international units (IU)/mL] raise concerns about systemic anticoagulation and promote *Staphylococcus (S.) aureus* biofilm formation in a dose-dependent manner^{5,6}. As an alternative, trisodium citrate (TSC) offers both anticoagulant and antimicrobial properties without systemic effects. *In vitro* studies have shown that the use of TSC reduces the formation of biofilms inside dialysis catheters⁵. Different concentrations of TSC have been tested, with 4% TSC being safe and effective in preventing catheter thrombosis, but it did not lead to the expected reduction in the incidence of CRBSI^{5,7}. Several studies have explored the addition of antibiotics to anticoagulant lock solutions to reduce the incidence of CRBSI^{8,9}. Moran et al.⁸ reported a significant decrease in CRBSI rates (0.28 episodes *per* 1,000 catheter-days) using a gentamicin and 4% TSC combination, compared to heparin (1,000 IU/mL). While this combination reduced CRBSI, it showed no benefit in preventing thrombotic complications. A meta-analysis by Lai et al.⁹, including 17 randomized controlled trials, confirmed a significant reduction in CRBSI with citrate-based locks compared to heparin [relative risk: 0.48; 95% confidence interval (CI):

0.31–0.73; $p = 0.001$]. Subsequent studies have highlighted citrate-based lock solutions combined with antimicrobial agents as the most effective strategy for preventing catheter-related infections⁵. Other research has focused on reducing catheter thrombosis. Weekly use of thrombolytics, such as recombinant tissue plasminogen activator (1 mg) or urokinase (25,000 IU) dissolved in 4% TSC with taurolidine (taurolock-urokinase), combined with standard anticoagulants twice weekly, was associated with reduced thrombosis and less frequent catheter replacement^{5,10}.

There were no data regarding the preventive use of urokinase (25,000 IU) dissolved in 4% TSC with taurolidine (taurolock-urokinase) combined with gentamicin-citrate antibiotic catheter locks.

The aim of this study was to compare the effects of a combination of prophylactic catheter lock solutions to gentamicin-citrate three times a week or heparin on the incidence of catheter-related complications (CRBSI and catheter-related thrombosis – CRT).

Methods

This was a randomized controlled trial with an open-label approach that included 96 adult patients with end-stage chronic kidney disease undergoing HD at the Clinic for Nephrology and Clinical Immunology, University Clinical Center of Vojvodina, Novi Sad, Serbia, from June 2018 to June 2023.

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the University Clinical Center of Vojvodina (No. 00-20/243, from February 22, 2018). Written informed consent was obtained from all participants prior to enrollment.

Participants were excluded if they had confirmed malignancy, significant bleeding within the previous four weeks, clinical or laboratory signs of active infection, psychiatric illness, pregnancy, or were receiving concomitant therapy affecting thrombogenicity.

Temporary double-lumen, polyurethane, non-tunneled catheters (REF CV 12122 F, 16 cm; Arrow International, Pennsylvania, USA) were inserted by anesthesiologists or nephrologists using a modified Seldinger technique under strict aseptic conditions.

Patients were randomly assigned in a 1:1:1 ratio to receive interdialytic catheter locking with either gentamicin-citrate twice weekly plus taurolidine/urokinase after the third

weekly session (TAURO group), gentamicin-citrate three times weekly (GENTAM group), or unfractionated heparin 5,000 IU/mL three times weekly (HEPARIN group). Patients in all three groups were predominantly male, with no significant differences in age or the underlying cause of end-stage kidney disease.

Patients underwent thrice-weekly 4-hr bicarbonate HD using high-flux polysulfone capillary membranes (1.1–1.3 m²), with a blood flow rate of 250–300 mL/min, a dialysate flow of 500 mL/min, and standard bicarbonate dialysate.

Following each dialysis session, both lumens were locked with the assigned solutions appropriate to the randomized group. Lock solutions were prepared by dialysis nurses at the end of each session and instilled into the catheter lumen according to protocol. Gentamicin-citrate lock was prepared by mixing 0.2 mL of gentamicin (40 mg/mL; 2 mL) with 3 mL of 4% TSC solution (IntraLock®, Fresenius Medical Care, Bad Homburg, Germany) in a sterile syringe. This solution contains gentamicin 2.5 mg/mL and 4% TSC. TauroLock™-U25,000 (TauroPharm GmbH, Waldbüttelbrunn, Germany) is a commercially available product that contains tauroolidine, 4% TSC, and 25,000 IU urokinase *per vial*. When used as a catheter lock solution, unfractionated heparin (5,000 IU/mL; Heparin Galenika 25,000 IU/5 mL, Galenika A.D., Belgrade, Serbia) was prepared from the original ampoule and instilled in a volume recommended by the catheter manufacturer using a 2 mL syringe. Lock volumes adhered to manufacturer recommendations, and catheter lock solutions were administered for at least 3 months after CVC insertion or until one of the predefined outcomes occurred.

During follow-up, catheter care was performed at each dialysis session following infection control protocols. Catheters were disinfected with chlorhexidine and 70% alcohol. Exit sites were treated aseptically with hydrogen peroxide, iodine, or Codan (colorless alcohol-based solution), and covered with 3M™ Tegaderm™ Transparent Film Dressing (Saint Paul, Minneapolis, USA) or sterile gauze¹¹. If signs of local infec-

tion were observed, venous blood samples for hemocultures and catheter exit site swabs were collected. Swabs were sent for microbiological analysis using standard culture and biochemical identification techniques¹². In the case of systemic infection signs, blood was sampled from both catheter lumens and a peripheral vein (10–20 mL *per sample*), and inoculated into commercial blood culture bottles (Himedia HiCombi HiSafe, 40 mL, HiMedia Laboratories, Thane, India). Cultures were processed using the BacT/Alert® 3D system (bioMérieux, Marcy-l'Étoile, France) for continuous monitoring. At the end of the study, after aseptic catheter removal, the distal 5 cm tip was placed in a sterile container and processed using standard microbiological techniques¹². Catheter tip colonization was determined using a semi-quantitative technique².

The primary outcomes were the occurrence of CRBSI, exit-site infections, and CRT, within 90 days post-CVC insertion (or until AVF maturation if longer). Patients were censored at catheter removal or death. CRT and CRBSI were defined according to the 2019 Kidney Disease Outcomes Quality Initiative (KDOQI) vascular access guidelines². Since non-tunneled CVCs were used, thrombosis was further defined as the inability to initiate dialysis after previous successful use or to maintain a blood flow rate \geq 150 mL/min during three consecutive dialysis sessions. Patients with CRBSI continued follow-up unless the catheter was removed. No patient experienced more than one episode of CRBSI. The number of catheter-days was calculated from CVC insertion to removal. The incidence of CVC thrombosis and CRBSI was expressed as events *per* 1,000 catheter-days, using the formula: (number of events/total catheter-days) \times 1,000.

Detailed patient laboratory data are presented in Table 1 of Azasevac et al.¹³.

Statistical analysis

The data were evaluated using descriptive statistics (mean values and standard deviations). Group differences

Table 1
Demographic and clinical characteristics at baseline by study group

Parameters	TAURO	GENTAM	HEPARIN	<i>p</i> -value
Gender				
male	14	14	14	1.0
female	18	18	18	
Age, years	58.6 \pm 15.3	60.4 \pm 12.2	62.1 \pm 14.6	0.1
Cause of ESKD				
diabetes	10 (31.3)	11 (34.4)	11 (34.4)	0.9
hypertension	11 (34.4)	12 (37.5)	9 (28.1)	0.8
polycystic kidney disease	3 (9.4)	3 (9.4)	3 (9.4)	1.0
glomerulonephritis	5 (15.6)	2 (6.3)	2 (6.3)	0.4
chronic pyelonephritis	0 (0)	1 (3.1)	3 (9.4)	0.1
other	3 (9.4)	3 (9.4)	4 (12.5)	0.9
Clinical characteristics				
overweight and obesity	17 (53.1)	21 (65.6)	17 (53.1)	0.5
CKD vintage, year	5.0 \pm 4.4	4.9 \pm 4.7	4.5 \pm 4.8	0.9
antiplatelet drugs	18 (46.0)	18 (46.0)	16 (50.0)	0.9

ESKD – end-stage kidney disease; CDK – chronic kidney disease.

All values are given as numbers (percentages) or mean \pm standard deviation.

Note. TAURO group – gentamicin-citrate twice weekly plus tauroolidine/urokinase after the third weekly session; GENTAM group – gentamicin-citrate three times weekly; HEPARIN group – unfractionated heparin 5,000 international units/mL three times weekly.

were tested with the *t*-test or Mann-Whitney *U* test for two groups, and analysis of variance or Kruskal-Wallis test for three or more groups. Categorical data were compared using the Chi-square test. Survival was analyzed using the Kaplan-Meier method and the log-rank test. Cox proportional hazards regression was used to examine the association between predictor variables and the occurrence of key catheter-related complications, with hazard ratios (HR) and 95% CI reported. A *p*-value < 0.05 was considered statistically significant.

Results

Baseline demographic, clinical, and laboratory data

A total of 96 patients (32 per group) were enrolled, and no patient was lost to follow-up or discontinued the catheter-lock solution. The mean patient age was 60.35 ± 14.25 years; 56.3% were male, without significant differences between groups. Approximately one-third of the study population had diabetes mellitus, with comparable rates of diabetic kidney disease across the three treatment groups. Together with arterial hypertension, diabetic kidney disease was the leading underlying cause of chronic kidney disease. Analysis of anthropometric parameters revealed that more than half of the study participants were overweight or obese (BMI > 25 kg/m²). Baseline demographic and clinical characteristics of the study population, presented by study group, are summarized in Table 1.

Among the patients included in this study, the majority (86 patients) received a CVC for the initiation of renal replacement therapy with HD, making it their first vascular access. A smaller proportion began HD *via* a functional AVF or AVG, with CVC placement required only after thrombosis of the existing access. One patient was initially treated with peritoneal dialysis and underwent CVC insertion upon transition to HD. Regarding CVC positioning, the majority of catheters were inserted *via* the right internal jugular vein (90.6% vs.

84.4% vs. 84.4%), followed by the left internal jugular vein (6.3% vs. 9.4% vs. 12.5%). There was no statistically significant difference in the distribution of jugular vein catheter placements among the three groups (*p* = 0.693).

Regarding laboratory findings, parameters were mostly similar across the three groups (TAURO, GENTAM, HEPARIN), with no statistically significant differences observed in white blood cells, hemoglobin, platelets, creatinine, albumin, calcium, phosphorus, ferritin, transferrin, CRP, or fibrinogen levels (*p* > 0.05). However, parathyroid hormone (PTH) levels differed significantly between the groups, with mean values of 428 ± 304 , 412 ± 334 , and 263 ± 231 pg/mL, respectively (*p* = 0.03).

Across 10,770 catheter-days, median catheter dwell time was similar: 125.94 ± 87.48 , 113.44 ± 35.68 , and 108.59 ± 37.84 days, respectively (*p* = 0.831).

Catheter-related bloodstream infection

The CRBSI rate was lowest in the TAURO group (0.27 episodes/1,000 catheter-days), compared to the GENTAM group (0.83 episodes/1,000 catheter-days) and the control HEPARIN group (1.15 episodes/1,000 catheter-days), although the difference was not statistically significant (*p* = 0.526). All isolated pathogens causing CRBSI were gram-positive. In 87.5% of cases, a single organism was isolated, while polymicrobial growth was identified in 12.5%. The most common pathogen was *S. aureus* (50.0%). Table 2 presents the distribution of isolated CRBSI pathogens across study groups.

The average interval from catheter insertion to CRBSI onset was 45.47 ± 38.93 days. While the TAURO group exhibited the longest duration prior to infection (115.99 ± 58.61 days), compared to the HEPARIN (37.75 ± 35.37 days) and GENTAM (33 ± 24.27 days) groups, this difference did not reach statistical significance (*p* = 0.212) (Table 3). The total number of catheter-days until CRBSI onset was 935. There was no statistically significant difference in cumulative CVC

Table 2

Distribution of pathogens isolated from catheter-related bloodstream infections by study group

Pathogen	Group			Total
	TAURO	GENTAM	HEPARIN	
<i>Staphylococcus</i> species, coagulase-negative	1 (12.5)	1 (12.5)	1 (12.5)	3 (37.5)
<i>Staphylococcus aureus</i>	0 (0)	2 (25.0)	2 (25.0)	4 (50.0)
Polimicrobic flora	0 (0)	0 (0)	1 (12.5)	1 (12.5)
Total	1 (12.5)	3 (37.5)	4 (50.0)	8 (100)

All values are given as numbers (percentages).

Table 3

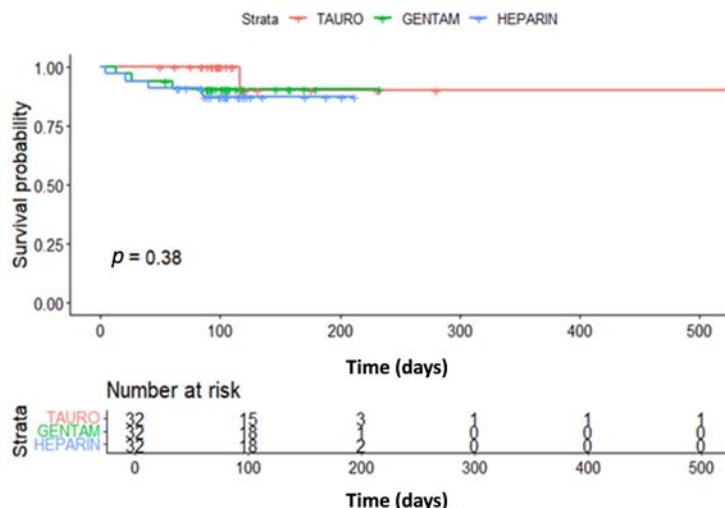
Number and time to onset of catheter-related complication following catheter insertion by study group

Catheter-related complication	Group			<i>p</i> -value
	TAURO	GENTAM	HEPARIN	
CRBSI	1 (3.12)	3 (9.37)	4 (12.5)	0.385
Time to CRBSI onset, days	115.99 ± 58.61	33 ± 24.27	37.75 ± 35.37	0.212
Exit-site infections	24 (75.0)	26 (81.2)	19 (59.4)	0.968
Time to exit-site infections onset, days	141.47 ± 111.747	122.19 ± 36.694	107.05 ± 32.667	0.344
Catheter-related thrombosis	4 (12.5)	4 (12.5)	4 (12.5)	1.000
Time to catheter-related thrombosis onset, days	67.75 ± 14.886	99.50 ± 49.568	132.00 ± 57.486	0.182

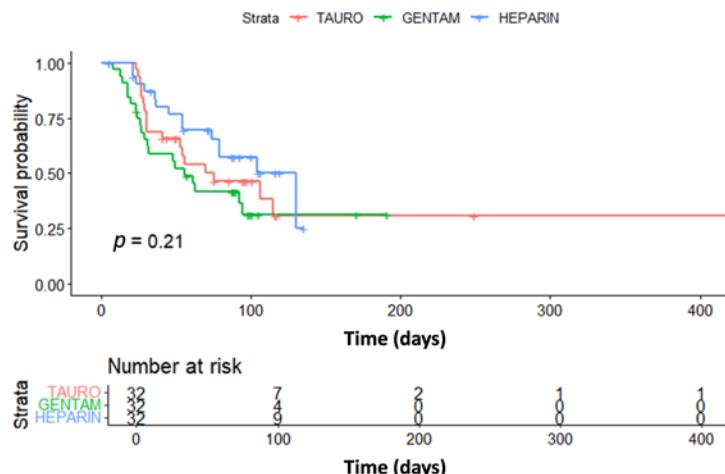
CRBSI – catheter-related bloodstream infection; n – number. For other abbreviations, see Table 1.

All values are given as numbers (percentages) or mean \pm standard deviation.

survival free from CRBSI between the antibiotic lock groups (TAURO and GENTAM) and the control HEPARIN group (log-rank test, $p = 0.38$) (Figure 1). Cox proportional analysis regarding the occurrence of CRBSI showed the following results: HR (HEPARIN vs. TAURO) = 0.236 (95% CI: 0.026–2.116), $p = 0.197$; HR (HEPARIN vs. GENTA) = 0.737 (95% CI: 0.165–3.292), $p = 0.689$; HR (TAURO vs. GENTA) = 3.115 (95% CI: 0.324–29.95), $p = 0.325$.


Exit-site infections

A total of 89 exit-site infections were documented during the follow-up period, corresponding to an overall incidence of 8.26 episodes *per* 1,000 catheter-days. The cumulative number of catheter-days until the first recorded exit-site infection was 7,219. The number of exit-site infections and the time to their onset by group are presented in Table 3. The incidence of exit-site infections was 8.45 episodes/1,000 catheter-days in the TAURO group, 10.46 in the GENTAM group, and 5.75 in the HEPARIN group


($p = 0.078$). Regarding the frequency of exit-site infections *per* patient, 23 (23.9%) patients experienced one episode, 27 (28.1%) experienced two episodes, and 4 (4.2%) experienced three or more episodes. The remaining 42 (43.7%) patients did not develop any exit-site infections during the study period. There was no statistically significant difference in cumulative CVC survival free from exit-site infections between the antibiotic lock groups (TAURO and GENTAM) and the control HEPARIN group ($p = 0.21$) (Figure 2). Cox proportional analysis for exit-site infections occurrence showed no significant associations with lock type: HR_{TAURO} vs. HEPARIN = 1.384 (95% CI: 0.687–2.787) ($p = 0.362$), and HR_{GENTAM} vs. HEPARIN = 1.836 (95% CI: 0.925–3.641) ($p = 0.082$).

Catheter thrombosis

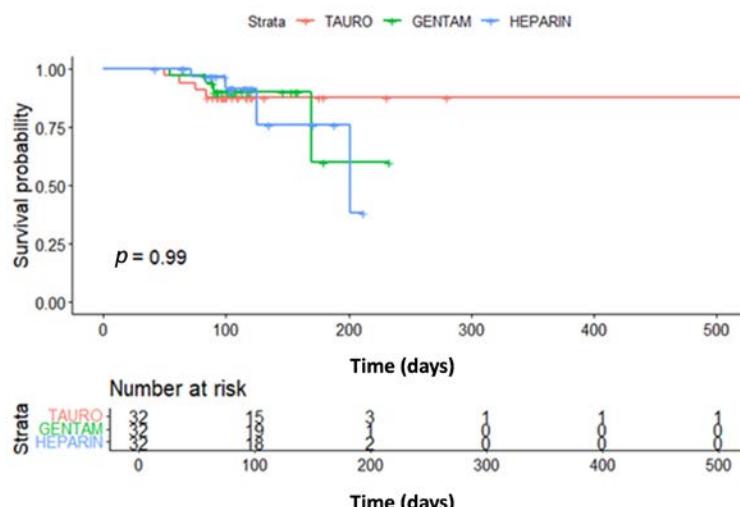

The overall incidence of CRT was 1.11 events *per* 1,000 catheter-days, with a total of 1,197 catheter-days until thrombosis occurred. The incidence of CVC thrombosis in

Fig. 1 – Kaplan-Meier analysis of cumulative catheter-related bloodstream infection-free catheter survival among the three catheter lock groups.
For abbreviations, see Table 1.

Fig. 2 – Kaplan-Meier analysis of cumulative exit-site infection-free central venous catheter survival among the three catheter lock solution groups.
For abbreviations, see Table 1.

**Fig. 3 – Kaplan-Meier analysis of cumulative thrombosis-free catheter survival among the three catheter lock solution groups.
For abbreviations, see Table 1.**

the TAURO group was 1.09/1,000 catheter-days, 1.10/1,000 catheter-days in the GENTAM group, and 1.15/1,000 catheter-days in the control HEPARIN group ($p = 0.990$). The mean time to CRT onset was 99.75 ± 48.81 days, with the number of thrombosis and time to onset by groups presented in Table 3. Cumulative catheter survival without thrombosis was not significantly different between groups receiving anticoagulant and fibrinolytic locks (TAURO and GENTAM groups) compared with the HEPARIN group ($p = 0.990$) (Figure 3). The Cox proportional model regarding the development of CVC thrombosis in relation to the lock type showed the following result: $HR_{TAURO \text{ vs. } HEPARIN} = 0.958$ (95% CI: 0.239–3.838) ($p = 0.952$); $HR_{GENTA \text{ vs. } HEPARIN} = 1.002$ (95% CI: 0.249–4.032) ($p = 0.997$); $HR_{TAURO \text{ vs. } GENTA} = 1.082$ (95% CI: 0.267–4.379) ($p = 0.912$).

Adverse effects

No differences were observed in the distribution of gentamicin-resistant strains after completion of the tested lock regimens and removal of the CVC ($p = 0.799$). No symptoms were recorded that would indicate toxicity from the administered drugs or solutions.

Discussion

Despite frequent complications, the use of temporary CVCs for dialysis remains remarkably high among incident HD patients in Serbia¹. Depending on the dialysis center, the incidence of CRBSIs associated with CVCs ranges from 1.0 to 6.2 episodes per 1,000 catheter-days⁷, while the incidence of CRT is reported to be 0.5 to 3.0 episodes per 1,000 catheter-days when heparin is used as the locking solution². To prevent CRBSIs and CRT, the KDOQI guidelines for vascular access recommend the use of anticoagulant agents such as heparin or citrate. In centers with a high incidence of these complications, or in high-risk patients with a history of re-

current infections and/or thrombosis, the guidelines suggest combining these agents with thrombolytics and antibiotic locks to further reduce the risk of recurrence². These combinations have yielded varying degrees of success in reducing the incidence of both CRBSIs^{5, 8, 9} and CRT^{5, 11}. To the best of our knowledge, this is the first study to use a combination of gentamicin-citrate and taurolock-urokinase to prevent catheter-related complications, aiming to reduce both infections and thrombosis in HD patients. Although the use of these catheter locks showed a non-significant trend toward reducing CRBSIs compared to other solutions, it did not prove superior in preventing catheter thrombosis.

As noted in previous studies, diabetes may contribute to CRBSI risk³. In our study, about one-third of patients had diabetes, with similar rates of diabetic kidney disease across groups. Mohazzab et al.¹⁴ identified obesity as a potential risk factor for catheter dysfunction and thrombosis in tunneled dialysis catheters. Notably, in the present study, over half of the patients in each group were overweight, with a balanced distribution among the groups. Analysis of biochemical parameters revealed that the only significant difference between the groups was a higher PTH level in the TAURO group compared to the HEPARIN group. However, according to the literature, PTH is not considered a recognized risk factor for the development of CRBSI or CVC thrombosis^{5, 14–17}.

In our study, over 90% of CVCs were inserted *via* the right internal jugular vein, followed by the left internal jugular vein. Previous studies have shown that right internal jugular access is associated with longer catheter survival, but potentially higher risk of bacteremia due to prolonged use¹⁸. In contrast, femoral vein catheterization has been linked to an increased risk of CRBSIs^{15, 19, 20}, likely due to its anatomical proximity to the perineum, a moist area conducive to bacterial growth. Prolonged catheter duration further increases the risk of infection, regardless of the insertion site^{18–20}.

Catheters in the TAURO group had the longest median duration (125.9 days), compared with the GENTAM (113.4 days) and HEPARIN (108.6 days) groups, although the difference was not statistically significant. Compared to published data, the duration of catheter use in our study was notably longer. Prior studies have reported much shorter average lifespans for temporary CVCs, ranging from 6 to 58 days, depending on catheter type and insertion site²⁰⁻²². For instance, Stolić et al.²² reported a much shorter average duration of 17.4 ± 13.2 days, with most catheters placed in the femoral vein. Weldetensae et al.²¹ found a mean duration of 57.9 ± 95.5 days for the first catheter, irrespective of insertion site. In contrast, Van Oevelen et al.²³ demonstrated significantly longer durations for tunneled and precured non-tunneled jugular catheters, while Slovenian data showed that precured non-tunneled catheters used as long-term access remained functional for over 9 months on average²⁴. As expected, tunneled permanent catheters have the longest duration, typically ranging from 504 (366-3,802) days²⁵. Our findings suggest that the catheter locks used in the TAURO group may contribute to enhanced catheter longevity.

The overall incidence of CRBSIs in our study was 0.74/1,000 catheter-days, with the lowest rate (*per* 1,000 catheter-days) observed in the TAURO group (0.27), followed by the GENTAM group (0.83), and the HEPARIN group (1.15), though without statistical significance. Notably, this represents a marked reduction compared to a previous study conducted at our center between 2012 and 2015, in which the CRBSI incidence associated with heparin locks (5,000 IU/mL) was 3.72/1,000 catheter-days²⁶. This improvement likely reflects better adherence to vascular access guidelines and catheter care protocols, which may have contributed to the lower infection rates even in the control (HEPARIN) group. Additionally, another study from our region have reported CRBSI rates affecting 3.7% to 4.8% of patients during the 2003-2006 period²². International data show a wide range of CRBSI incidence with temporary catheters locked with heparin (3.55-7.74/1,000 catheter-days), and reduced infection rates when precured catheters or gentamicin-heparin locks were used^{19, 21, 23, 24}. Antibiotic-based catheter locks, particularly those containing gentamicin-citrate, have been shown to reduce CRBSI incidence, with reported effectiveness ranging from 31% to 100%²⁷. Although randomized trials investigating taurolidine-urokinase combinations have not reached statistical significance, a meta-analysis including this agent reported a favorable trend in reducing infection rates^{10, 28}. All CRBSI isolates in our study were gram-positive organisms, with *S. aureus* responsible for 50% of cases, consistent with find-

ings reported in the literature²⁹. Although gentamicin primarily targets gram-negative bacteria, none of these organisms were identified in our patients. Similarly, no gram-negative pathogens were isolated in the HEPARIN control group, consistent with previous data from our center, where gram-negative bacteria represented only 6.4% of all CRBSI isolates²⁶.

In contrast to a meta-analysis by Sheng et al.³⁰, which demonstrated that citrate-based lock solutions significantly reduced the incidence of catheter exit-site infections compared to heparin at 5,000 IU/mL, our study found the highest incidence in the GENTAM group and the lowest in the HEPARIN group ($p = 0.078$).

The incidence of CRT did not differ across groups, with an overall incidence of 1.11 events *per* 1,000 catheter-days. These rates are lower than previously reported thrombosis incidences associated with heparin locks, which reach up to 3.0 events/1,000 catheter days². Previous study using 4% TSC as an anticoagulant reported catheter thrombosis rates of around 3.2 events *per* 1,000 catheter-days²⁴. However, one meta-analysis concluded that citrate locks, regardless of concentration or combination with antimicrobials such as gentamicin, did not significantly reduce catheter malfunction³⁰. In contrast, a separate meta-analysis found that urokinase combined with 4% TSC and taurolidine significantly reduced the incidence of catheter thrombosis compared to heparin locks²⁸.

This study has several limitations, including a relatively small sample size and a single-center design, which limit the generalizability of the findings. A notable strength of our study is the novel application of antimicrobial and thrombolytic lock combinations for the prevention of CRBSI and catheter thrombosis. Although the observed reductions in complication rates were not statistically significant, the results suggest potential benefit in high-risk populations and settings with high CRBSI incidence.

Conclusion

The findings of this study indicate that the use of gentamicin-citrate in combination with taurolock-urokinase is safe and feasible in routine clinical practice. While no statistically significant reductions in catheter-related complications were observed, the consistent trend toward lower catheter-related bloodstream infection rates and enhanced catheter longevity supports further investigation. Future multicenter studies with larger sample sizes are needed to validate these results and guide individualized catheter care strategies in hemodialysis patients.

R E F E R E N C E S

- Stepanovic N, Popovic M, Bogosavac M, Damnjanovic Z, Matejeric D, Ljatifi E, et al. Use of vascular access methods for hemodialysis in Serbia: Results from SerbVasc registry. *J Vasc Access* 2025; 11297298241312952. DOI: 10.1177/11297298241312952.
- Lok CE, Huber TS, Lee T, Shenoy S, Yerzlin AS, Abreo K, et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. *Am J Kidney Dis* 2020; 75(4 Suppl 2): S1-164. Erratum in: *Am J Kidney Dis* 2021; 77(4): 551. DOI: 10.1053/j.ajkd.2021.02.002.

3. Wang L, Jia L, Jiang A. Pathology of catheter-related complications: what we need to know and what should be discovered. *J Int Med Res* 2022; 50(10): 3000605221127890. DOI: 10.1177/03000605221127890.
4. Vachharajani TJ, Taliercio JJ, Anvari E. New Devices and Technologies for Hemodialysis Vascular Access: A Review. *Am J Kidney Dis* 2021; 78(1): 116–24. DOI: 10.1053/j.ajkd.2020.11.027.
5. Wang Y, Sun X. Reevaluation of lock solutions for Central venous catheters in hemodialysis: a narrative review. *Ren Fail* 2022; 44(1): 1501–18. DOI: 10.1080/0886022X.2022.2118068.
6. Jiménez Hernández M, Soriano A, Filella X, Cahó M, Coll E, Rebled JM, et al. Impact of locking solutions on conditioning biofilm formation in tunneled haemodialysis catheters and inflammatory response activation. *J Vasc Access* 2021; 22(3): 370–9. DOI: 10.1177/1129729820942040.
7. Piątkowska E, Paleczny J, Dyda K, Letachowicz K. Antimicrobial activity of hemodialysis catheter lock solutions in relation to other compounds with antiseptic properties. *PLoS One* 2021; 16(10): e0258148. DOI: 10.1371/journal.pone.0258148.
8. Moran J, Sun S, Khababa I, Pedan A, Doss S, Schiller B. A randomized trial comparing gentamicin/citrate and heparin locks for central venous catheters in maintenance hemodialysis patients. *Am J Kidney Dis* 2012; 59(1): 102–7. DOI: 10.1053/j.ajkd.2011.08.031.
9. Lai B, Huang W, Yu H, Chen T, Gao Y, Wang W, et al. Citrate as a safe and effective alternative to heparin for catheter locking: a systematic review and meta-analysis of randomized controlled trials. *Front Med (Lausanne)* 2025; 12: 1530619. DOI: 10.3389/fmed.2025.1530619.
10. Bonkain F, Stolear JC, Catalano C, Vandervelde D, Treille S, Couttenye MM, et al. Prevention of tunneled cuffed catheter dysfunction with prophylactic use of a taurolidine urokinase lock: A randomized double-blind trial. *PLoS One* 2021; 16(5): e0251793. DOI: 10.1371/journal.pone.0251793.
11. Fan CH, Chu CN, Chiu FH, Chen CT, Tung HH. Flushing and locking management related to central venous catheter occlusion rate among adult patients in acute care: a best practice implementation project. *JBI Evid Implement* 2024; 22(2): 131–9. DOI: 10.1097/XEB.0000000000000394.
12. Thompson RB, Miller JM. Specimen Collection, Transport and Processing: Bacteriology. In: Murray PR, editor. *Manual of Clinical Microbiology*. 8th ed. Washington: ASM Press; 2003. p. 286–330.
13. Azăsevac T, Knežević V, Stražmester-Majstorović G, Božić D, Ljubić B, Petrović L. Comparison of the efficacy of gentamicin-citrate and gentamicin-citrate/Taurolock-urokinase locks for non-tunneled catheters in hemodialysis patients. *Nephrol Dial Transplant* 2024; 39(Suppl 1): gfae069-0785-2430. DOI: <https://doi.org/10.1093/ndt/gfae069.785>
14. Mohazzab A, Khavanin Zadeh M, Dehesh P, Abdolvand N, Rahimi Z, Rahmani S. Investigation of risk factors for tunneled hemodialysis catheters dysfunction: competing risk analysis of a tertiary center data. *BMC Nephrol* 2022; 23(1): 300. DOI: 10.1186/s12882-022-02927-z.
15. Guo H, Zhang L, He H, Wang L. Risk factors for catheter-associated bloodstream infection in hemodialysis patients: A meta-analysis. *PLoS One* 2024; 19(3): e0299715. DOI: 10.1371/journal.pone.0299715.
16. López-Rubio M, Lago-Rodríguez MO, Ordieres-Ortega L, Oblitas CM, Moragón-Ledesma S, Alonso-Beato R, et al. A Comprehensive Review of Catheter-Related Thrombosis. *J Clin Med* 2024; 13(24): 7818. DOI: 10.3390/jcm13247818.
17. Szymańska J, Kakareko K, Rydzewska-Rosolowska A, Głowińska I, Hryzko T. Locked Away-Prophylaxis and Management of Catheter Related Thrombosis in Hemodialysis. *J Clin Med* 2021; 10(11): 2230. DOI: 10.3390/jcm10112230.
18. Almenara-Tejedor M, Rodríguez-Pérez MA, Moyano-Franco MJ, de Cueto-López M, Rodríguez-Baño J, Salgueira-Lazo M. Tunneled catheter-related bacteremia in hemodialysis patients: incidence, risk factors and outcomes. A 14-year observational study. *J Nephrol* 2023; 36(1): 203–12. DOI: 10.1007/s40620-022-01408-8.
19. Pasilan RM, Tomacruz-Amante ID, Dimacali CT. The epidemiology and microbiology of central venous catheter related bloodstream infections among hemodialysis patients in the Philippines: a retrospective cohort study. *BMC Nephrol* 2024; 25(1): 331. DOI: 10.1186/s12882-024-03776-8.
20. Nagarik AP, Ghaware A, Gupta S. Duration of catheterisation and risk of bacteremia following temporary hemodialysis catheterization. *Int J Adv Res Med* 2020; 2(1): 15–7. DOI: 10.22271/27069567.2020.v2.i1a.32
21. Weldetensae MK, Weledgegebriel MG, Nigusse AT, Berhe E, Gebrearegay H. Catheter-Related Blood Stream Infections and Associated Factors Among Hemodialysis Patients in a Tertiary Care Hospital. *Infect Drug Resist* 2023; 16: 3145–56. DOI: 10.2147/IDR.S409400.
22. Stolić R, Trajković G, Perić V, Jovanović A, Stolić D, Sotić S, et al. Central venous catheters in hemodialysis: To accept recommendations or to stick to own experience. *Vojnosanit Pregl* 2008; 65(1): 21–6. DOI: 10.2298/vsp0801021s.
23. Van Oeveren M, Heggen BD, Abrahams AC, Rotmans JI, Snoeijs MG, Vernooy RW, et al. Central venous catheter-related complications in older haemodialysis patients: A multicentre observational cohort study. *J Vasc Access* 2023; 24(6): 1322–31. DOI: 10.1177/11297298221085225.
24. Ponikvar R, Buturović-Ponikvar J. Temporary hemodialysis catheters as a long-term vascular access in chronic hemodialysis patients. *Ther Apher Dial* 2005; 9(3): 250–3. DOI: 10.1111/j.1774-9987.2005.00265.x.
25. Zhang A, Clark TW, Trerotola SO. Long-Term Durability of Tunneled Hemodialysis Catheters: Outcomes from a Single Institution 22-Year Experience. *Cardiovasc Intervent Radiol* 2025; 48(5): 619–25. DOI: 10.1007/s00270-024-03941-4.
26. Knežević V, Đurđević Mirković T, Božić D, Stražmester Majstorović G, Mitić I, Groždenović Lj. Risk factors for catheter-related infections in patients on hemodialysis. *Vojnosanit Pregl* 2018; 75(2): 159–66. DOI: <https://doi.org/10.2298/VSP160205332K>
27. Augustine N, Timotius KH. The Biofilm Eradication Using Gentamicin and Anticoagulants as Catheter-Related Infection Prophylaxis in Hemodialysis Patients: A Systematic Review. *Microbiol Biotechnol Lett* 2019; 47(2): 173–82. DOI: <https://doi.org/10.4014/mbl.1808.08013>
28. Deng J, Luo W, Zhang W, Xiong S, Wang L. Efficacy of urokinase in maintaining patency of hemodialysis catheters: A meta-analysis. *Clin Nephrol* 2024; 102(4): 212–22. DOI: 10.5414/CN111239.
29. Chandra EH, Adriani TC, Alvi A, Mularwadi, Nugroho NT, Yusuf D. Evaluation of Central Venous Catheter for Dialysis Associated with Bloodstream Infections. *Ann Vasc Dis* 2024; 17(1): 9–13. DOI: 10.3400/avd.oa.23-00062.
30. Sheng KX, Zhang P, Li JW, Cheng J, He YC, Böhlke M, et al. Comparative efficacy and safety of lock solutions for the prevention of catheter-related complications including infectious and bleeding events in adult haemodialysis patients: a systematic review and network meta-analysis. *Clin Microbiol Infect* 2020; 26(5): 545–52. DOI: 10.1016/j.cmi.2019.12.003.

Received on August 19, 2025
 Revised on October 17, 2025
 Accepted on November 5, 2025
 Online First December 2025

Possible relationship between blood groups and impacted lower third molars categorized according to the Pell and Gregory and the Winter classifications

Moguća povezanost krvnih grupa i impaktiranih donjih trećih molara kategorisanih prema Pell i Gregory i Winter klasifikacijama

Ibrahim Tevfik Gulsen, Tansu Cimen

Alanya Alaaddin Keykubat University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Antalya, Türkiye

Abstract

Background/Aim. Teeth that fail to reach their normal position within the jaws are considered to be impacted, and the etiology of impacted teeth is multifactorial. The aim of this study was to examine the possible relationship between blood groups and classifications of impacted lower third molars (LTM) according to the Pell and Gregory and the Winter classifications. **Methods.** This retrospective, cross-sectional study included 534 patients (274 males and 260 females) with at least one impacted LTM. A total of 890 LTM were assessed using panoramic radiographs. Teeth were classified based on the Pell and Gregory and the Winter classifications, and blood groups were documented for each patient. Statistical analysis was performed using Fisher-Freeman-Halton test and Fisher's exact test, with the Bonferroni correction Z test for multiple comparisons. **Results.** Significant relationships were identified between blood groups and the Pell and Gregory classification ($p = 0.008$), but not with the Winter classification. Notably, women with A Rh-negative (Rh-), AB Rh-, and B Rh- blood groups exhibited higher prevalence rates for the I/B, I/C, and III/C positions, respectively. Additionally, women with A Rh-positive (Rh+) and O Rh+ blood groups demonstrated higher prevalence rates for the II/A position, while men with A Rh+ showed higher rates for the II/C position. Gender-specific differences in impaction patterns were observed for A Rh+ and O Rh+ blood groups ($p = 0.006$, $p = 0.038$, respectively). **Conclusion.** Blood group antigens might influence LTM impaction patterns, particularly in relation to the Pell and Gregory classification.

Keywords:

blood group antigens; molar, third; radiography, panoramic; tooth, impacted.

Apstrakt

Uvod/Cilj. Zubovi koji ne dostignu svoj normalan položaj u vilicama smatraju se impaktiranim, a etiologija impaktiranih zuba ima više uzroka. Cilj rada bio je da se ispita moguća povezanost između krvnih grupa i impaktiranih donjih trećih molara (*lower third molars* – LTM) kategorisanih prema Pell i Gregory i Winter klasifikacijama. **Metode.** Ova retrospektivna, studija preseka obuhvatila je 534 pacijenta (274 muškarca i 260 žena) sa najmanje jednim impaktiranim LTM. Ukupno je analizirano 890 impaktiranih LTM pomoću panoramske radiografije. Zubovi su klasifikovani prema Pell i Gregory i Winter klasifikacijama, a krvne grupe su zabeležene za svakog pacijenta. Statistička analiza sprovedena je korišćenjem Fisher-Freeman-Halton-ovog testa i Fisher-ovog egzaktnog testa, uz Bonferroni-jevu korekciju Z testa za višestruka poređenja. **Rezultati.** Utvrđena je značajna povezanost između krvnih grupa i Pell i Gregory klasifikacije ($p = 0,008$), ali ne i povezanost sa Winter klasifikacijom. Posebno je uočeno da su žene sa krvnim grupama A Rh-negativnom (Rh-), AB Rh- i B Rh- pokazale višu prevalenciju za pozicije I/B, I/C i III/C, redom. Takođe, žene sa krvnim grupama A Rh-pošitivnom (Rh+) i O Rh+ imale su više stopu učestalosti za poziciju II/A, dok su muškarci sa A Rh+ krvnom grupom imali višu stopu učestalosti za poziciju II/C. Polno specifične razlike u obrascima impakcije primećene su kod krvnih grupa A Rh+ i O Rh+ ($p = 0,006$, $p = 0,038$, redom). **Zaključak.** Antigeni krvnih grupa mogu uticati na obrasce impakcije LTM, posebno u odnosu na Pell i Gregory klasifikaciju.

Ključne reči:

krvne grupe, antigeni; molar, treći; ortopantomografija; zub, impakcija.

Introduction

Tooth impaction is defined as the failure of a tooth to erupt into its normal functional position in the dental arch, and this condition occurs most frequently in the region of the lower third molars (LTM^s) ^{1, 2}. The impaction of LTM^s can be diagnosed during both routine dental examinations and the treatment of another tooth or teeth coincidentally ^{3, 4}. The impaction of LTM^s can be associated with insufficient space, limited skeletal growth, reduced vertical condylar growth, increased crown dimension, delayed maturation of third molars, local factors, and certain systemic conditions (e.g., cleidocranial dysplasia, Down syndrome) ^{5, 6}. Furthermore, genetic factors may be linked with tooth impaction according to many previous studies ⁷.

Numerous classification systems have been proposed for impacted LTM^s (ILTM^s) to evaluate their angulation and extraction difficulty. Among these, the Winter and the Pell and Gregory classifications are the most preferred ⁸. According to the Winter classification, the LTM^s are categorized based on the angle formed between their longitudinal axis and that of the adjacent second molar as mesioangular, distoangular, horizontal, vertical, or inverted ⁹. Concerning the relationship to the anterior margin of the mandibular ramus, the Pell and Gregory classification is performed to understand the level (depth) of the occlusal plane and the difficulty of impaction of the LTM ¹⁰.

A number of studies have demonstrated a correlation between blood groups (BGs) and the occurrence of various diseases ^{11, 12}. The ABO classification and Rhesus (Rh) system are the most commonly used around the world. The ABO classification comprises four blood groups (A, B, O, and AB) and is based on the presence or absence of A and B antigens on the surface of red blood cells. Specifically, blood group A is characterized by the presence of the A antigen, blood group B by the presence of the B antigen, blood group AB by the presence of both A and B antigens, and blood group O by the absence of both antigens ¹³. In contrast, the Rh system is a classification system that categorizes groups according to the presence or absence of the RhD antigen on the red blood cell membrane. If a red blood cell presents the RhD antigen, it is designated as Rh-positive (Rh+), while if it does not, it is designated as Rh-negative (Rh-) ¹⁴.

Previous studies have reported associations between BGs and various medical and dental conditions, including cancer, cardiovascular disease, and dental caries ¹⁵⁻¹⁷. However, a limited number of studies have examined the possible association between BGs and oral diseases. With respect to this matter, the evidence indicated that considering BGs separately, AB individuals have a greater risk of developing early childhood dental caries compared with individuals of other BGs ^{15, 18}.

A great deal of controversy and inconsistency remains concerning the possible significance of BGs, specifically those of ABO system, as either diagnostic or prognostic factors in the context of oral and dental diseases, especially due to the diversity of methodological approaches employed in the various studies. Additionally, the varying geographical

distributions and genetic profiles of BGs in different populations may contribute to the observed discrepancies ¹⁹. The association between impacted teeth and ABO and Rh types within BGs is of great importance in predicting which populations are more susceptible to developing impacted third molars.

The aim of this study was to examine the possible relationship between ILTM classifications and BGs.

Methods

Study design

This retrospective cross-sectional study was conducted on all patients referred to the Department of Oral Radiology, Faculty of Dentistry, Alanya Alaaddin Keykubat University, Türkiye, between May 1 and December 31, 2023. The study was approved by the Ethics Committee of the Faculty of Dentistry, Alanya Alaaddin Keykubat University (No. 10354421-2023/14-15, from October 18, 2023). All individuals participating in the study were informed verbally about the study and provided written informed consent.

The study population consisted of all patients who underwent panoramic radiographs for dental examination or treatment. Out of 8,880 patients, those older than 20 years with at least one ILTM with complete root development, with no systemic disease, and no radiological lesions such as cysts or tumors in the posterior mandibular area were included in our study.

Among these individuals, patients lacking a lower second molar in the relevant region, those with crown destruction of the mandibular second molar due to caries or other reasons, those with a history of orthodontic treatment, and those with any trauma or pathology that would affect the dentition were excluded from the study. Ultimately, 534 patients (274 males and 260 females) who met the inclusion criteria were enrolled in the study, contributing a total of 890 ILTM^s, of which 454 were in males and 436 in females.

Measures and procedures

All panoramic radiographs were obtained by a single operator using standardized parameters (66 kV, 8 mA, exposure time 15.8 s) on a panoramic X-ray unit (ProMax[®] 2D S3, Planmeca, Helsinki, Finland), with a magnification factor set to 1. A patient informed consent form, designed specifically for use within the context of our study, was utilized to conduct interviews with the participants. The participants were examined by a single dental practitioner (G.I.T.) to ensure standardization and reliability in the evaluation process. This approach minimized inter-observer variability, particularly given that subjective interpretations were required for the classifications of third molars. Additionally, the dental practitioner was calibrated through a test-retest process, achieving a substantial agreement ($\kappa = 0.879$), which ensured consistency in applying the classification criteria across all participants. The radiographs were analyzed at the same time of day and on the same

computer. During data collection, a 5-min rest period was taken after every 30 min of evaluating radiographs. This was done to prevent visual fatigue and to ensure the integrity of the process.

The collected data included the patient's gender, BG, classification of impacted third molars based on both the Pell and Gregory and the Winter classification systems, and the side (left or right) of the impacted tooth. BG (categorized as A, B, AB, or O) and Rh factor (positive or negative) were retrieved from medical documentation, the e-Nabız system (a digital health portal provided by the Turkish Ministry of Health), and driver's licenses. A tooth was defined as impacted if the occlusal surface of the LTM was positioned below the occlusal plane and partially embedded within the jawbone.

The ILTMs were evaluated using the Pell and Gregory classification system, which assesses the tooth's position based on two parameters: its vertical alignment relative to the adjacent second molar's occlusal plane, and the extent to which it is obstructed by the mandibular ramus.

Regarding the ramus relationship, Class I is identified when the space between the anterior border of the mandibular ramus and the distal surface of the second molar is wide enough to accommodate the full mesiodistal width of the third molar. Class II applies when the available space is smaller than the third molar's width, resulting in partial coverage of the tooth by the ramus. Class III indicates that the mandibular ramus entirely overlaps the area where the third molar would erupt, with no discernible gap between the ramus and the distal side of the second molar.

Regarding the vertical positioning relative to the second molar, position A denotes that the top surface (occlusal surface) of the third molar is at or above the level of the second molar's biting surface. Position B describes a scenario where the third molar lies between the occlusal surface and the cervical (neck) area of the second molar. Position C is used when the occlusal surface of the third molar is situated beneath the cervical margin of the second molar.

Additionally, the ILTMs were categorized according to the Winter classification, which is based on the angulation of the third molar in relation to the long axis of the second

molar. This included vertical, mesioangular, horizontal, distoangular, and inverse positions. The buccoangular and linguangular orientations were excluded from the analysis due to limitations in their accurate visualization on panoramic radiographs.

Statistical analysis

A sample size calculation was conducted using the G*Power software (latest version 3.1.9.7, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany). The sample size was determined by utilizing the prevalence of impacted third molars by the Winter and the Pell and Gregory classification on radiographic assessment in relation to ABO BGs, which was published in a previous study²⁰. All statistical analyses were performed using IBM SPSS Statistics version 23 (Chicago, USA) in a Windows environment. The Fisher-Freeman-Halton test and Fisher's exact test were employed to compare categorical data, with multiple comparisons analyzed by a Bonferroni-corrected Z test. The results of the analyses were presented in the form of a frequency table, with the corresponding percentage values. The significance level was set at $p < 0.05$.

Based on the results of the reference study²⁰, the minimum number of ILTMs required for sampling was 835, as determined by the power analysis, with a 95% confidence level ($1-\alpha$), a 95% power test ($1-\beta$), and an effect size of $w: 0.198$.

Results

Demographic characteristics

A total of 534 patients (274 males and 260 females) with a mean age of 30.8 ± 8.7 years (range: 20–73 years) were included in the study. Among the 890 ILTMs, 454 belonged to males and 436 to females. The teeth were nearly evenly distributed between the right (444 teeth) and left (446 teeth) sides. The distribution of BGs was as follows: A Rh+ 39.1%, O Rh+ 28.3%, B Rh+ 13.3%, AB Rh+ 5.8%, O Rh- 5.4%, A Rh- 5.1%, B Rh- 1.7%, and AB Rh- 1.3% (Table 1).

Table 1

Demographic characteristics of the study population (n = 534)

Characteristics	Value
Gender	
male	274 (51.3)
female	260 (48.7)
Age, years	30.8 ± 8.7 (20–73)
Blood group	
A Rh+	39.1
O Rh+	28.3
B Rh+	13.3
AB Rh+	5.8
O Rh-	5.4
A Rh-	5.1
B Rh-	1.7
AB Rh-	1.3

All values are given as numbers (percentages), except for age, which is shown as mean \pm standard deviation (range).

Classification of impacted teeth

In accordance with the Pell and Gregory classification, the most prevalent position was II/B (36.85%), followed by II/A (33.14%), and the least prevalent was III/A (1.01%). Concerning the Winter classification, the most common angulation was mesioangular (28.36%), followed by vertical (27.57%), and the least common was inverted (1.56%) (Table 2).

Relationships between classifications and blood groups

No statistically significant relationship was observed between BGs and classes in the Winter classification, regardless of gender or side ($p = 0.476$) (Table 3).

In contrast, a statistically significant relationship was found between BGs and ILTMs in the Pell and Gregory classification, regardless of gender or side ($p = 0.008$) (Table 4).

Table 2
Distribution of impacted lower third molars
by the Pell and Gregory and the Winter classifications

Classification/Position	Prevalence (%)
Pell and Gregory	
II/B	36.85
II/A	33.14
I/A	8.31
II/C	6.85
III/B	5.39
I/B	3.25
III/C	2.92
I/C	2.24
III/A	1.01
Winter	
mesioangular	28.36
vertical	27.57
distoangular	23.87
horizontal	18.60
inverted	1.56

Table 3**Comparison of the Winter classification classes by blood groups**
for right and left sides, and overall distribution without gender distinction

Side/Class	Blood group								Test statistic	*p-value
	A Rh+	A Rh-	B Rh+	B Rh-	O Rh+	O Rh-	AB Rh+	AB Rh-		
Right										
mesioangular	49 (28.3)	8 (34.8)	16 (26.7)	2 (28.6)	30 (22.7)	8 (32.0)	7 (30.4)	0 (0)		
distoangular	40 (23.1)	4 (17.4)	18 (30.0)	1 (14.3)	34 (26.2)	5 (20.0)	3 (13.0)	2 (66.7)		
vertical	41 (23.7)	5 (21.7)	17 (28.3)	2 (28.6)	36 (27.3)	9 (36.0)	6 (26.1)	0 (0)	18.315	0.940
horizontal	40 (23.1)	6 (26.1)	9 (15.0)	2 (28.6)	27 (20.5)	3 (12.0)	7 (30.4)	1 (33.3)		
inverted	3 (1.7)	0 (0)	0 (0)	0 (0)	3 (2.3)	0 (0)	0 (0)	0 (0)		
total	173 (100)	23 (100)	60 (100)	7 (100)	130 (100)	25 (100)	23 (100)	3 (100)		
Left										
mesioangular	58 (35.4)	4 (18.2)	16 (27.1)	1 (12.5)	40 (30.1)	6 (24.0)	7 (24.1)	1 (16.7)		
distoangular	32 (19.5)	3 (13.6)	13 (22.0)	0 (0)	34 (25.6)	6 (24.0)	13 (44.8)	3 (50.0)		
vertical	45 (27.4)	10 (45.5)	21 (35.6)	3 (37.5)	37 (27.8)	9 (36.0)	4 (13.8)	1 (16.7)	30.026	0.268
horizontal	26 (15.9)	5 (22.7)	8 (13.6)	4 (50.0)	20 (15.0)	3 (12.0)	4 (13.8)	1 (16.7)		
inverted	3 (1.8)	0 (0)	1 (1.7)	0 (0)	2 (1.5)	1 (4.0)	1 (3.4)	0 (0)		
total	164 (100)	22 (100)	59 (100)	8 (100)	133 (100)	25 (100)	29 (100)	6 (100)		
Total										
mesioangular	107 (31.8)	12 (26.7)	32 (26.9)	3 (20.0)	70 (26.4)	14 (28.0)	14 (26.9)	1 (11.1)		
distoangular	72 (21.4)	7 (15.6)	31 (26.1)	1 (6.7)	68 (26.4)	11 (22.0)	16 (30.8)	5 (55.6)		
vertical	86 (25.5)	15 (33.3)	38 (31.9)	5 (33.3)	73 (27.5)	18 (36.0)	10 (19.2)	1 (11.1)	26.504	0.476
horizontal	66 (19.6)	11 (24.4)	17 (14.3)	6 (40.0)	47 (17.7)	6 (12.0)	11 (21.2)	2 (22.2)		
inverted	6 (1.8)	0 (0)	1 (0.8)	0 (0)	5 (1.9)	1 (2.0)	1 (1.9)	0 (0)		
total	337 (100)	45 (100)	119 (100)	15 (100)	263 (100)	50 (100)	52 (100)	9 (100)		

All values are given as numbers (percentages).

Note: * Fisher-Freeman-Halton test was used.

Table 4

Scale/Class	Blood group								Test statistic	*p-value
	A Rh+	A Rh-	B Rh+	B Rh-	O Rh+	O Rh-	AB Rh+	AB Rh-		
Right										
I/A	15 (8.7)	2 (8.7)	6 (10.0)	0 (0)	10 (7.7)	7 (28.0)	1 (4.3)	0 (0)		
I/B	3 (1.7)	2 (8.7)	3 (5.0)	0 (0)	2 (1.5)	1 (4.0)	2 (8.7)	0 (0)		
I/C	2 (1.2)	0 (0)	2 (3.3)	0 (0)	1 (0.8)	0 (0)	0 (0)	0 (0)		
II/A	63 (36.4)	4 (17.4)	20 (33.3)	4 (57.1)	51 (39.2)	9 (36.0)	7 (30.4)	2 (66.7)		
II/B	54 (31.2)	10 (43.5)	25 (41.7)	2 (28.6)	46 (35.4)	7 (28.0)	9 (39.1)	1 (33.3)	62.671	0.134
II/C	17 (9.8)	0 (0)	0 (0)	0 (0)	9 (6.9)	0 (0)	1 (4.3)	0 (0)		
III/A	2 (1.2)	0 (0)	0 (0)	0 (0)	2 (1.5)	0 (0)	0 (0)	0 (0)		
III/B	12 (6.9)	3 (13.0)	3 (5.0)	0 (0)	8 (6.2)	1 (4.0)	0 (0)	0 (0)		
III/C	5 (2.9)	2 (8.7)	1 (1.7)	1 (14.3)	1 (0.8)	0 (0)	3 (13.0)	0 (0)		
total	173 (100)	23 (100)	60 (100)	7 (100)	130 (100)	25 (100)	23 (100)	3 (100)		
Left										
I/A	15 (9.1)	0 (0)	2 (3.4)	0 (0)	10 (7.5)	3 (12)	3 (10.3)	0 (0)		
I/B	3 (1.8)	2 (9.1)	3 (5.1)	1 (12.5)	5 (3.8)	2 (8.0)	0 (0)	0 (0)		
I/C	3 (1.8)	0 (0)	3 (5.1)	0 (0)	8 (6)	0 (0)	0 (0)	1 (16.7)		
II/A	56 (34.1)	9 (40.9)	13 (22.0)	4 (50.0)	35 (26.3)	7 (28.0)	10 (34.5)	1 (16.7)		
II/B	57 (34.8)	6 (27.3)	28 (47.5)	2 (25.0)	56 (42.1)	11 (44.0)	12 (41.4)	2 (33.3)	59.421	0.137
II/C	14 (8.5)	2 (9.1)	6 (10.2)	0 (0)	9 (6.8)	2 (8.0)	1 (3.4)	0 (0)		
III/A	2 (1.2)	2 (9.1)	0 (0)	0 (0)	1 (0.8)	0 (0)	0 (0)	0 (0)		
III/B	8 (4.9)	0 (0)	3 (5.1)	0 (0)	8 (6.0)	0 (0)	0 (0)	2 (33.3)		
III/C	6 (3.7)	1 (4.5)	1 (1.7)	1 (12.5)	1 (0.8)	0 (0)	3 (10.3)	0 (0)		
total	164 (100)	22 (100)	59 (100)	8 (100)	133 (100)	25 (100)	29 (100)	6 (100)		
Total										
I/A	30 (8.9)	2 (4.4)	8 (6.7)	0 (0)	20 (7.6)	10 (20.0)	4 (7.7)	0 (0)		
I/B	6 (1.8)	4 (8.9)	6 (5.0)	1 (6.7)	7 (2.7)	3 (6.0)	2 (3.8)	0 (0)		
I/C	5 (1.5)	0 (0)	5 (4.2)	0 (0)	9 (3.4)	0 (0)	0 (0)	1 (11.1)		
II/A	119 (35.3)	13 (28.9)	33 (27.7)	8 (53.3)	86 (32.7)	16 (32.0)	17 (32.7)	3 (33.3)		
II/B	111 (32.9)	16 (35.6)	53 (44.5)	4 (26.7)	102 (38.8)	18 (36.0)	21 (40.4)	3 (33.3)	75.721	0.008
II/C	31 (9.2)	2 (4.4)	6 (5.0)	0 (0)	18 (6.8)	2 (4.0)	2 (3.8)	0 (0)		
III/A	4 (1.2)	2 (4.4)	0 (0)	0 (0)	3 (1.1)	0 (0)	0 (0)	0 (0)		
III/B	20 (5.9) ^{ab}	3 (6.7) ^{ab}	6 (5.0) ^{ab}	0 (0) ^{ab}	16 (6.1) ^{ab}	1 (2.0) ^{ab}	0 (0) ^b	2 (22.2) ^a		
III/C	11 (3.3) ^{abc}	3 (6.7) ^{abc}	2 (1.7) ^{abc}	2 (13.3) ^c	2 (0.8) ^b	0 (0) ^{abc}	6 (11.5) ^{ac}	0 (0) ^{abc}		
total	337 (100)	45 (100)	119 (100)	15 (100)	263 (100)	50 (100)	52 (100)	9 (100)		

All values are given as numbers (percentages). Bold values indicate statistical significance, $p < 0.05$.

Note: * Fisher-Freeman-Halton test was used; ^{a-c} there was no difference between groups with the same letter.

Gender-specific analyses

Separate analyses were conducted to investigate the relationships between BGs and classifications of ILTMs in males and females, across both the Pell and Gregory and the Winter classification systems.

For females, a statistically significant relationship was found between BGs and classifications in the Pell

and Gregory system, regardless of the side ($p = 0.041$) (Table 5).

No statistically significant relationships were found in the Winter classification for females ($p > 0.05$).

For males, no statistically significant relationships were identified between BGs and classifications in either the Pell and Gregory or the Winter classification systems, regardless of the side ($p > 0.05$).

Table 5

Female sample distribution by the Pell and Gregory classification across blood groups, regardless of side

Scale/Class	Blood group								Test statistic	*p-value
	A Rh+	A Rh-	B Rh+	B Rh-	O Rh+	O Rh-	AB Rh+	AB Rh-		
Right										
I/A	10 (10.5)	1 (12.5)	2 (6.3)	0 (0)	3 (4.7)	3 (25)	0 (0)	0 (0)		
I/B	1 (1.1)	1 (12.5)	2 (6.3)	0 (0)	1 (1.6)	1 (8.3)	1 (9.1)	0 (0)		
I/C	1 (1.1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)		
II/A	38 (40.0)	2 (25.0)	9 (28.1)	1 (33.3)	33 (51.6)	4 (33.3)	4 (36.4)	2 (100)		
II/B	33 (34.7)	3 (37.5)	17 (53.1)	1 (33.3)	19 (29.7)	4 (33.3)	5 (45.5)	0 (0)	63.334	0.390
II/C	4 (4.2)	0 (0)	0 (0)	0 (0)	4 (6.3)	0 (0)	0 (0)	0 (0)		
III/A	1 (1.1)	0 (0)	0 (0)	0 (0)	2 (3.1)	0 (0)	0 (0)	0 (0)		
III/B	4 (4.2)	1 (12.5)	1 (3.1)	0 (0)	2 (3.1)	0 (0)	0 (0)	0 (0)		
III/C	3 (3.2)	0 (0)	1 (3.1)	1 (33.3)	0 (0)	0 (0)	1 (9.1)	0 (0)		
total	95 (100)	8 (100)	32 (100)	3 (100)	64 (100)	12 (100)	11 (100)	2 (100)		

Table 5 (continued)

Scale/Class	Blood group								Test statistic	*p-value
	A Rh+	A Rh-	B Rh+	B Rh-	O Rh+	O Rh-	AB Rh+	AB Rh-		
Left										
I/A	8 (10.0)	0 (0)	2 (6.5)	0 (0)	3 (5.1)	1 (10.0)	2 (13.3)	0 (0)		
I/B	1 (1.3)	1 (14.3)	2 (6.5)	0 (0)	1 (1.7)	1 (10.0)	0 (0)	0 (0)		
I/C	0 (0)	0 (0)	0 (0)	0 (0)	2 (3.4)	0 (0)	0 (0)	1 (25.0)		
II/A	35 (43.8)	4 (57.1)	5 (16.1)	2 (66.7)	17 (28.8)	4 (40.0)	5 (33.3)	1 (25.0)		
II/B	27 (33.8)	2 (28.6)	18 (58.1)	0 (0)	31 (52.5)	4 (40.0)	6 (40.0)	1 (25.0)	67.538	0.130
II/C	4 (5.0)	0 (0)	2 (6.5)	0 (0)	3 (5.1)	0 (0)	1 (6.7)	0 (0)		
III/A	1 (1.3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)		
III/B	3 (3.8)	0 (0)	2 (6.5)	0 (0)	2 (3.4)	0 (0)	0 (0)	1 (25.0)		
III/C	1 (1.3)	0 (0)	0 (0)	1 (33.3)	0 (0)	0 (0)	1 (6.7)	0 (0)		
total	80 (100)	7 (100)	31 (100)	3 (100)	59 (100)	10 (100)	15 (100)	4 (100)		
Total										
I/A	18 (10.3)	1 (6.7)	4 (6.3)	0 (0)	6 (4.9)	4 (18.2)	2 (7.7)	0 (0)		
I/B	2 (1.1) ^a	2 (13.3) ^b	4 (6.3) ^{ab}	0 (0) ^{ab}	2 (1.6) ^{ab}	2 (9.1) ^{ab}	1 (3.8) ^{ab}	0 (0) ^{ab}		
I/C	1 (0.6) ^a	0 (0) ^{ab}	0 (0) ^a	0 (0) ^{ab}	2 (1.6) ^{ab}	0 (0) ^{ab}	0 (0) ^{ab}	1 (16.7) ^b		
II/A	73 (41.7)	6 (40.0)	14 (22.2)	3 (50.0)	50 (40.7)	8 (36.4)	9 (34.6)	3 (50.0)		
II/B	60 (34.3)	5 (33.3)	35 (55.6)	1 (16.7)	50 (40.7)	8 (36.4)	11 (42.3)	1 (16.7)	68.123	0.041
II/C	8 (4.6)	0 (0)	2 (3.2)	0 (0)	7 (5.7)	0 (0)	1 (3.8)	0 (0)		
III/A	2 (1.1)	0 (0)	0 (0)	0 (0)	2 (1.6)	0 (0)	0 (0)	0 (0)		
III/B	7 (4.0)	1 (6.7)	3 (4.8)	0 (0)	4 (3.3)	0 (0)	0 (0)	1 (16.7)		
III/C	4 (2.3) ^a	0 (0) ^{ab}	1 (1.6) ^a	2 (33.3) ^b	0 (0) ^a	0 (0) ^{ab}	2 (7.7) ^{ab}	0 (0) ^{ab}		
total	175 (100)	15 (100)	63 (100)	6 (100)	123 (100)	22 (100)	26 (100)	6 (100)		

All values are given as numbers (percentages). Bold values indicate statistical significance, $p < 0.05$.

Note: * Fisher-Freeman-Halton test was used; ^{a, b} there was no difference between groups with the same letter.

Investigation of blood groups and impaction relationships

Each BG was investigated to compare impacted tooth subgroups according to gender, both with and without side discrimination. Among all BGs, A Rh+ and O Rh+ were the only ones that showed a statistically significant relationship between gender and impacted tooth subgroups. Importantly, this relationship was observed exclusively in the Pell and Gregory classification.

For the A Rh+ BG, a statistically significant relationship between gender and impacted tooth subgroups was iden-

tified without side discrimination ($p = 0.006$). These results are detailed in Table 6, where differences between males and females in specific subgroups are highlighted. For instance, significant differences were noted for Class II/A (males: 28.4%, females: 41.7%) and Class II/C (males: 14.2%, females: 4.6%), indicating notable gender-based variations within these subgroups.

For the O Rh+ BG, a similar statistically significant relationship was found ($p = 0.038$) (Table 7). These findings underscore the unique relevance of these two BGs in relation to ILTMs, as no other BG demonstrated significant associations.

Table 6

Comparison of impacted tooth subgroups by gender in the A Rh+ blood group based on the Pell and Gregory classification, considering sides and overall distribution

Scale/Class	Gender		Test statistic	*p-value
	male	female		
Right				
I/A	5 (6.4)	10 (10.5)		
I/B	2 (2.6)	1 (1.1)		
I/C	1 (1.3)	1 (1.1)		
II/A	25 (32.1)	38 (40.0)		
II/B	21 (26.9)	33 (34.7)		
II/C	13 (16.7)	4 (4.2)	12.529	0.086
III/A	1 (1.3)	1 (1.1)		
III/B	8 (10.3)	4 (4.2)		
III/C	2 (2.6)	3 (3.2)		
total	78 (100)	95 (100)		

Table 6 (continued)

Scale/Class	Gender		Test statistic	*p-value
	male	female		
Left				
I/A	7 (8.3)	8 (10.0)		
I/B	2 (2.4)	1 (1.3)		
I/C	3 (3.6)	0 (0)		
II/A	21 (25.0)	35 (43.8)		
II/B	30 (35.7)	27 (33.8)		
II/C	10 (11.9)	4 (5.0)	12.408	0.097
III/A	1 (1.2)	1 (1.3)		
III/B	5 (6.0)	3 (3.8)		
III/C	5 (6.0)	1 (1.3)		
total	84 (100)	80 (100)		
Total				
I/A	12 (7.4)	18 (10.3)		
I/B	4 (2.5)	2 (1.1)		
I/C	4 (2.5)	1 (0.6)		
II/A	46 (28.4) ^a	73 (41.7) ^b		
II/B	51 (31.5)	60 (34.3)		
II/C	23 (14.2) ^a	8 (4.6) ^b	19.880	0.006
III/A	2 (1.2)	2 (1.1)		
III/B	13 (8.0)	7 (4.0)		
III/C	7 (4.3)	4 (2.3)		
total	162 (100)	175 (100)		

All values are given as numbers (percentages).

Bold values indicate statistical significance, $p < 0.05$.

Note: * Fisher-Freeman-Halton test was used; ^{a, b} there was no difference between groups with the same letter.

Table 7

Comparison of impacted tooth subgroups by gender in the O Rh+ blood group based on the Pell and Gregory classification, considering sides and overall distribution

Scale/Class	Gender		Test statistic	*p-value
	male	female		
Right				
I/A	7 (10.6)	3 (4.7)		
I/B	1 (1.5)	1 (1.6)		
I/C	1 (1.5)	0 (0)		
II/A	18 (27.3)	33 (51.6)		
II/B	27 (40.9)	19 (29.7)		
II/C	5 (7.6)	4 (6.3)	13.068	0.051
III/A	0 (0)	2 (3.1)		
III/B	6 (9.1)	2 (3.1)		
III/C	1 (1.5)	0 (0)		
total	66 (100)	64 (100)		
Left				
I/A	7 (9.5)	3 (5.1)		
I/B	4 (5.4)	1 (1.7)		
I/C	6 (8.1)	2 (3.4)		
II/A	18 (24.3)	17 (28.8)		
II/B	25 (33.8)	31 (52.5)		
II/C	6 (8.1)	3 (5.1)	8.911	0.306
III/A	1 (1.4)	0 (0)		
III/B	6 (8.1)	2 (3.4)		
III/C	1 (1.4)	0 (0)		
total	74 (100)	59 (100)		

Table 7 (continued)

Scale/Class	Gender		Test statistic	* <i>p</i> -value
	male	female		
Total				
I/A	14 (10)	6 (4.9)		
I/B	5 (3.6)	2 (1.6)		
I/C	7 (5.0)	2 (1.6)		
II/A	36 (25.7) ^a	50 (40.7) ^b		
II/B	52 (37.1)	50 (40.7)		
II/C	11 (7.9)	7 (5.7)	15.133	0.038
III/A	1 (0.7)	2 (1.6)		
III/B	12 (8.6)	4 (3.3)		
III/C	2 (1.4)	0 (0)		
total	140 (100)	123 (100)		

All values are given as numbers (percentages).

Bold values indicate statistical significance, *p* < 0.05.

Note: *Fisher-Freeman-Halton test was used; ^{a, b} there was no difference between groups with the same letter.

Discussion

Teeth that fail to reach their normal position within the jaws at the expected time of eruption, for a variety of reasons, are considered to be impacted²¹. The etiology of impacted teeth is multifactorial, with numerous contributing factors. These include physical disintegration of the lamina of the teeth, insufficient space for the eruption of the teeth, a natural defect of the tooth lamina, and failure of the induction of the mesenchyme²².

There is a paucity of data regarding potential differences in impaction incidence between genders, populations, age groups, and over time². Although some researchers have reported a higher occurrence in females compared to males²³⁻²⁵, a substantial body of literature indicates no statistically significant association between gender and the presence of impacted third molars²⁶⁻²⁹. These findings are consistent with the results of the present study. Similarly, the current results revealed no significant difference in the frequency of impaction between the right and left sides of the mandible, which aligns with observations reported in several other studies^{23, 30, 31}.

The LTM^s have the highest incidence of impaction. In order to evaluate these teeth radiographically, it is necessary to determine the angulation of the molars according to the Winter classification, the level of depth in the bone, and the relationship of the teeth to the ramus of the mandible. Furthermore, the relationship of the second molars to the aforementioned structures should be determined according to the Pell and Gregory classification. Similar to the present study, mesioangular and inverted positions were observed to be the most and least prevalent, respectively, according to the Winter classification, as reported by Santos et al.³². In accordance with the Pell and Gregory classification, some authors have indicated that the C level is the most prevalent at the depth level³³, while others have suggested that the A level is the most common³⁴. Previous research³⁵ reported that the most commonly observed level was B, consistent with the findings of this study. When considering the ramus

of the mandible, although some authors have found that Position I is the most common position, followed by Position II³⁵, many studies have reported that Position II is the most common position^{32, 36, 37}. This is similar to the present study. In contrast to prior study³⁸, which identified II/A as the most prevalent category followed by II/B within the Pell and Gregory classification, the present study yielded different results. In our study, the II/B position (36.85%) was the most prevalent, followed by II/A (33.14%).

The most common cause of impacted third molars is insufficient space for eruption, which has a genetic component. This raises the possibility of a potential link between BG and the occurrence of impacted third molars³⁹. The association has been investigated previously. However, unlike the findings presented in the current research, Ahmadi et al.⁴⁰ did not demonstrate a statistically significant correlation between BGs and the presence of impacted teeth. The sample size and geographical distribution may have been responsible. In previous research³, the prevalence of impacted teeth in both jaws was analyzed, and the existing impacted teeth were classified according to the Winter classification. In this study, given that the prevalence of impacted teeth was the highest, only impacted teeth in the lower jaw were evaluated, and all impacted teeth were grouped according to both the Pell and Gregory and the Winter classifications.

The significant association observed between BGs and impacted teeth according to the Pell and Gregory classification suggests a potential genetic or biological link. Among the different BGs, individuals with AB Rh- showed a higher prevalence of the III/B position, while those with B Rh- and AB Rh+ were more likely to present with the III/C position. These findings provide new insights into the possible role of genetic factors.

Gender-specific analyses revealed further distinctions. Women with A Rh- BG were more likely to present with the I/B position, while those with AB Rh- and B Rh- BGs were more likely to present with I/C and III/C positions, respectively. Additionally, women with A Rh+

and O Rh+ BGs exhibited higher prevalence rates for the II/A position, whereas men with A Rh+ showed higher rates for the II/C position. These findings could have significant clinical implications for identifying individuals at greater risk of specific impaction patterns based on their gender and BG.

This study's limitations warrant careful consideration. First, all evaluations were conducted by a single operator, which, while ensuring consistency, limits the inter-rater reliability of the findings. Future studies should involve multiple independent observers to enhance objectivity. Second, the exclusion of certain classification angles, such as bucoangular and distoangular, due to the limitations of panoramic radiography, may have excluded relevant data. Third, the study design did not include a *post hoc* power analysis, which could have further strengthened the statistical robustness of the findings. Moreover, clinical implications could be influenced by these limitations. For instance, the lack of inter-observer variability may impact the reproducibility of these results in broader clinical settings. Fourth, the sample size and geographic focus may limit the generalizability of the results. Future research should aim to

include larger, more diverse populations to validate these findings and explore advanced imaging techniques to capture a more comprehensive classification of impacted teeth. Lastly, employing multi-center trials and advanced statistical techniques may help better elucidate the relationship between genetic factors, such as BG, and impact patterns.

Conclusion

This study provides novel insights into the relationship between blood groups and impacted third molars, particularly with respect to the Pell and Gregory classification. The findings highlight the possible clinical significance of incorporating genetic and demographic factors into dental practice. Future research should investigate the underlying biological mechanisms that drive these associations and assess their implications in larger, more diverse cohorts.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

1. *Toedtling V, Marov EC, Marov N, Bodnar D, Hayawi MW, Forouzanfar T, et al.* Radiographic detection rate of distal surface caries in the mandibular second molar in populations with different third molar management strategies: a multicenter study. *J Clin Med* 2024; 13(6): 1656. DOI: 10.3390/jcm13061656.
2. *Carter K, Worthington S.* Predictors of third molar impaction: a systematic review and meta-analysis. *J Dent Res* 2016; 95(3): 267–76. DOI: 10.1177/0022034515615857.
3. *Allassaf MS, Hasubah SM, Sharib SH, Othman AA, Alsulaimani MA, Qazali AA, et al.* Assessment of the relation between patterns of third-molar impaction and blood group: a retrospective study. *Cureus* 2023; 15(9): e45130. DOI: 10.7759/cureus.45130.
4. *Gebeysu T, Abaynew Y.* Prevalence and patterns of third molar impaction among Ethiopians in Addis Ababa: a retrospective pilot study. *Sci Rep* 2024; 14(1): 8952. DOI: 10.1038/s41598-024-59821-x.
5. *Akarslan ZZ, Kocabay C.* Assessment of the associated symptoms, pathologies, positions and angulations of bilateral occurring mandibular third molars: is there any similarity? *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2009; 108(3): e26–32. DOI: 10.1016/j.tripleo.2009.05.036.
6. *Bishara SE.* Impacted maxillary canines: a review. *Am J Orthod Dentofacial Orthop* 1992; 101(2): 159–71. DOI: 10.1016/0889-5406(92)70008-X.
7. *Isomura ET, Kurushima Y, Kobashi H, Enoki K, Yamashita M, Ikebe K, et al.* Factors influencing the localization of mandibular third molars in twins. *J Oral Maxillofac Surg* 2020; 78(8): 1279–87. DOI: 10.1016/j.joms.2020.03.021.
8. *Zaman MU, Almutairi NS, Abdulrahman Alnashwan M, Albogami SM, Alkhammass NM, Alam MK.* Pattern of mandibular third molar impaction in nonsyndromic 17,760 patients: a retrospective study among Saudi population in central region, Saudi Arabia. *Biomed Res Int* 2021; 2021: 1880750. DOI: 10.1155/2021/1880750.
9. *Winter GB.* The principles of exodontia as applied to the impacted third molar. St Louis (MO): American Medical Book Co; 1926. p. 835.
10. *Pell GJ.* Impacted mandibular third molars, classification and modified technique for removal. *Dent Dig* 1933; 39: 330–8.
11. *Arend P.* Why blood group A individuals are at risk whereas blood group 0 individuals are protected from SARS-CoV-2 (COVID-19) infection: a hypothesis regarding how the virus invades the human body via ABO(H) blood group-determining carbohydrates. *Immunobiology* 2021; 226(3): 152027. DOI: 10.1016/j.imbio.2020.152027.
12. *Jesch U, Endler PC, Wulkersdorfer B, Spranger H.* ABO blood group. Related investigations and their association with defined pathologies. *Sci World J* 2007; 7: 1151–4. DOI: 10.1100/tsw.2007.133.
13. *Watkins WM.* The ABO blood group system: historical background. *Transfus Med* 2001; 11(4): 243–65. DOI: 10.1046/j.1365-3148.2001.00321.x.
14. *Avent ND, Reid ME.* The Rh blood group system: a review. *Blood* 2000; 95(2): 375–87. Erratum in: *Blood* 2000; 95(7): 2197. DOI: <https://doi.org/10.1182/blood.V95.2.375>
15. *Govindaraju L, Jeevanandan G, Subramanian EMG.* ABO blood grouping: a potential risk factor for early childhood caries – a cross-sectional study. *Indian J Dent Res* 2018; 29(3): 313–6. DOI: 10.4103/ijdr.IJDR_156_17.
16. *Zhang H, Mooney CJ, Reilly MP.* ABO blood groups and cardiovascular diseases. *Int J Vasc Med* 2012; 2012: 641917. DOI: 10.1155/2012/641917.
17. *Gates MA, Wolfson BM, Cramer DW, Hankinson SE, Tworoger SS.* ABO blood group and incidence of epithelial ovarian cancer. *Int J Cancer* 2011; 128(2): 482–6. DOI: 10.1002/ijc.25339.
18. *Yadav K, Solanki J, Dileep CL, Adyanthaya BR, Mishra P, Yadav O.* Association between different blood groups, depression and oral health status of dental students. *Clujul Med* 2018; 91(3): 317–21. DOI: 10.15386/cjmed-830.

19. Abbas A, Abbas B, Aziz S, Ullab F, Panhwar WA, Ali A, et al. Prevalence of ABO and Rh blood group in District Karak (female). *Bull Environ Pharmacol Life Sci* 2020; 9: 31–4.

20. Zhi YH, Aziz CK, Haque S, Ab Rahman W, Alam MK. Prevalence of impacted third molars by Winter's classification and Pell & Gregory's classification on radiographic assessment in relation to ABO blood group in orthodontic patients in Hospital Universiti Sains Malaysia (HUSM). *Int Med J* 2019; 26(4): 321–5.

21. Al-Madani SO, Jaber M, Prasad P, Maslamani MJ. The patterns of impacted third molars and their associated pathologies: a retrospective observational study of 704 patients. *J Clin Med* 2024; 13(2): 330. DOI: 10.3390/jcm13020330.

22. Byahatti S, Ingafou MS. Prevalence of eruption status of third molars in Libyan students. *Dent Res J (Isfahan)* 2012; 9(2): 152–7. DOI: 10.4103/1735-3327.95228.

23. Al-Anqudi SM, Al-Sudairy S, Al-Hosni A, Al-Maniri A. Prevalence and pattern of third molar impaction: a retrospective study of radiographs in Oman. *Sultan Qaboos Univ Med J* 2014; 14(3): e388–92. DOI: <https://doi.org/10.18295/2075-0528.1604>.

24. Yasa Y, Altynbekov K, Kalafatoglu BS, Meiramkul S, Albusain M, Altynbekov C. Prevalence and radiographic patterns of third molar impaction and agenesis in the Kazakh population. *Int Dent J* 2025; 75(5): 100897. DOI: 10.1016/j.identj.2025.100897.

25. Quek SL, Tay CK, Tay KH, Tob SL, Lim KC. Pattern of third molar impaction in a Singapore Chinese population: a retrospective radiographic survey. *Int J Oral Maxillofac Surg* 2003; 32(5): 548–52. DOI: 10.1016/S0901-5027(03)90413-9.

26. Syed KB, Zabeer KB, Ibrahim M, Bagi MA, Assiri MA. Prevalence of impacted molar teeth among Saudi population in Asir region, Saudi Arabia: a retrospective study of 3 years. *J Int Oral Health* 2013; 5(1): 43–7.

27. Alamri A, Alshabrani N, Al-Madani A, Shahin S, Nazir M. Prevalence of impacted teeth in Saudi patients attending dental clinics in the Eastern Province of Saudi Arabia: a radiographic retrospective study. *Sci World J* 2020; 2020: 8104904. DOI: 10.1155/2020/8104904.

28. Pedro FL, Bandeira MC, Volpato LE, Marques AT, Borba AM, Muis CR, et al. Prevalence of impacted teeth in a Brazilian subpopulation. *J Contemp Dent Pract* 2014; 15(2): 209–13. DOI: 10.5005/jp-journals-10024-1516.

29. Salam S, Bary A, Sayed A. Prevalence of impacted teeth and pattern of third molar impaction among Kerala population: a cross-sectional study. *J Pharm Bioallied Sci* 2023; 15(Suppl 1): S354–7. DOI: 10.4103/jpbs.jpbs_618_22.

30. Muhamad AH, Nezar W, Azzaaldeen A. Prevalence of impacted mandibular third molars in population of Arab Israelis: a retrospective study. *IOSR J Dent Med Sci* 2016; 15(1): 80–9.

31. Chu FC, Li TK, Lui VK, Newsome PR, Chow RL, Cheung LK. Prevalence of impacted teeth and associated pathologies: a radiographic study of the Hong Kong Chinese population. *Hong Kong Med J* 2003; 9(3): 158–63.

32. Santos KK, Lages FS, Maciel CAB, Glória JCR, Douglas-de-Oliveira DW. Prevalence of mandibular third molars according to the Pell & Gregory and Winter classifications. *J Maxillofac Oral Surg* 2022; 21(2): 627–33. DOI: 10.1007/s12663-020-01473-1.

33. Alfadil L, Almajed E. Prevalence of impacted third molars and the reason for extraction in Saudi Arabia. *Saudi Dent J* 2020; 32(5): 262–8. DOI: 10.1016/j.sdentj.2020.01.002.

34. Xavier CRG, Dias-Ribeiro E, Ferreira-Rocha J, Duarte BG, Ferreira-Júnior O, Sant'Ana E, et al. Evaluation of the positions of impacted third molars according to the Winter and Pell & Gregory classifications in panoramic radiography. *Rev Cir Traumatol Buco-Maxilo-Fac* 2010; 10(2): 83–90.

35. Primo FT, Primo BT, Scheffer MAR, Hernández PAG, Rivaldo EG. Evaluation of 1211 third molars positions according to the classification of Winter, Pell & Gregory. *Int J Odontostomatol* 2017; 11(1): 61–5. DOI: 10.4067/S0718-381X2017000100009.

36. Kaomongkolgit R, Tantanapornkul W. Pattern of impacted third molars in Thai population: a retrospective radiographic survey. *J Int Dent Med Res* 2017; 10(1): 30–5.

37. El-Khateeb SM, Arnout EA, Hifnany T. Radiographic assessment of impacted teeth and associated pathosis prevalence: pattern of occurrence at different ages in Saudi males in Western Saudi Arabia. *Saudi Med J* 2015; 36(8): 973–9. DOI: 10.15537/smj.2015.8.12204.

38. Trento CL, Zini MM, Moreschi E, Zamponi M, Gottardo DV, Carihani JP. Localization and classification of third molars: radiographic analysis. *Interbio* 2009; 3(2): 18–26.

39. Yuan Y, Chai Y. Regulatory mechanisms of jaw bone and tooth development. *Curr Top Dev Biol* 2019; 133: 91–118. DOI: 10.1016/bs.ctdb.2018.12.013.

40. Abmadi H, Ebrahimi A, Ghorbani F. The correlation between impacted third molar and blood group. *Int J Dent* 2021; 2021: 2775913. DOI: 10.1155/2021/2775913.

Received on March 17, 2025

Revised on November 24, 2025

Accepted on December 10, 2025

Online First January 2026

Fracture resistance of five intra-orifice barriers in endodontically treated mandibular premolars: an *in vitro* study

Otpornost na prelom pet različitih barijera koje se postavljuju na ulazu u kanal endodontski lečenih premolara u donjoj vilici: *in vitro* studija

İrfan Yüksekkaya, Uğur Aydin, Oğuz Burhan Çetinkaya, Emre Çulha

Gaziantep University, Dentistry Faculty, Department of Endodontics, Gaziantep,
Türkiye

Abstract

Background/Aim. Endodontically treated teeth (ETT) are more prone to fractures than vital teeth, and insertion of an intra-orifice barrier (IOB) can increase their fracture resistance (FR). The aim of this study was to compare and evaluate the FR of ETT using smart dentin replacement (SDR), everX Flow (EXF), resin-modified glass-ionomer cements (RMGIC), calcium-enriched mixture (CEM), and universal flowable composite (UFC) as IOBs. **Methods.** After performing root canal treatment on 70 human mandibular premolars with a single root canal, the coronal 3 mm of root fillings were removed with heated instruments, except for the control specimens. Based on the IOB above the root canal obturation, the filled specimens were divided into six groups: RMGIC (n = 13), UFC (n = 13), SDR (n = 13), CEM (n = 13), EXF (n = 13), and a control group (CG; n = 5). A spherical steel insert with a diameter of 2 mm was used in the strength test with a universal testing machine. Data were analyzed using the Shapiro-Wilk test, analysis of variance, and least significant difference tests. The value of $p < 0.05$ is considered statistically significant. **Results.** The EXF group showed the highest mean FR of 759.9 ± 177.9 Newtons. The groups RMGIC, UFC, and EXF demonstrated a statistically significant difference compared to CG. CEM had a lower FR value than all groups except the SDR and CG. However, the FR of SDR was lower than that of the UFC and EXF groups. There were no significant differences between EXF, UFC, and RMGIC groups. **Conclusion.** Except for SDR and CEM, all other groups showed an increase in FR compared to CG. The results indicate that using EXF, UFC, or RMGIC as IOB can significantly enhance the FR of ETT compared to untreated controls. Clinically, selecting these IOBs may help prevent root fractures and improve the long-term prognosis of ETT.

Keywords:

bicuspid; dental cements; endodontics; *in vitro*; materials testing; root canal preparation.

Apstrakt

Uvod/Cilj. Endodontski lečeni zubi (*endodontically treated teeth* – ETT) su skloniji su prelomima od vitalnih zuba, a umetanje barijera koje se postavljuju na ulazu u kanal (*intra-orifice barriers* – IOB) može povećati njihovu otpornost na prelom (*fracture resistance* – FR). Cilj rada bio je da se uporedi i proceni FR ETT korišćenjem „pametne“ zamene dentina (*smart dentin replacement* – SDR), *everX Flow* (EXF), smolom modifikovanog staklenojonomernog cementa (*resin-modified glass-ionomer cements* – RMGIC), kalcijum silikatnog cementa (*calcium-enriched mixture* – CEM) i univerzalnog tečnog kompozita (*universal flowable composite* – UFC) kao IOB. **Metode.** Nakon lečenja korena kanala 70 humanih jednokanalnih mandibularnih premolara, zagrejanim instrumentima su uklonjena koronarna 3 mm korenskih punjenja, osim kod kontrolnih uzoraka. Na osnovu IOB iznad opturacije korenskog kanala, uzorci pripremljeni za punjenje podeljeni su u šest grupa: RMGIC (n = 13), UFC (n = 13), SDR (n = 13), CEM (n = 13), EXF (n = 13) i kontrolna grupa (KG; n = 5). U testu čvrstoće univerzalnom mašinom za ispitivanje korišćen je sferični čelični umetak prečnika 2 mm. Za analizu podataka korišćeni su Shapiro-Wilk test, analiza varijanse i test najmanje značajne razlike. Vrednost $p < 0,05$ smatrana je statistički značajnom. **Rezultati.** Grupa EXF pokazala je najvišu srednju FR od $759,9 \pm 177,9$ Njutna. Grupe RMGIC, UFC i EXF pokazale su statistički značajnu razliku u odnosu na KG. CEM je imao nižu vrednost FR od svih grupa osim SDR i KG. Međutim, FR SDR bio je niži nego kod UFC i EXF grupa. Nije bilo značajnih razlika između grupa EXF, UFC i RMGIC. **Zaključak.** Osim SDR i CEM, sve ostale grupe pokazale su povećanje FR u poređenju sa KG. Rezultati ukazuju da korišćenje EXF, UFC ili RMGIC kao IOB može značajno poboljšati FR ETT u poređenju sa netretiranim kontrolama. Klinički, izbor ovih IOB može pomoći u sprečavanju preloma korena zuba i poboljšanju dugoročne prognoze ETT.

Ključne reči:

premolari; zub, cement; endodoncija; *in vitro*; materijali, testiranje; zub, korenski kanal, priprema.

Introduction

Preservation of the remaining tooth structure is one of the main objectives of endodontic treatment¹. Canal preparation with rotary instruments, which have a greater taper, heightens the risk of fracture in the coronal third of teeth. Consequently, it is essential to emphasize the reinforcement of these vulnerable regions². After dental caries and periodontal disease, vertical root fractures (VRFs), described as fractures in teeth that run along the longitudinal axis of the root, are one of the common causes of tooth extraction³. Endodontically treated teeth (ETT) are more prone to fractures than vital teeth, which may vary from a typical cusp fracture to a catastrophic root fracture that requires extraction⁴. This can be prevented by strengthening the remaining radicular tooth structure, particularly in teeth exposed to high occlusal stresses. For this reinforcement, it is recommended to use restorative materials with compressive strength and modulus of elasticity similar to dentin, which helps reduce stress concentration at the dentin-restoration interface⁵.

It is recommended to remove the 3 mm gutta-percha at the orifice of the root canal and replace it with a restorative material⁶. Insertion of an intra-orifice barrier (IOB) increases the strength of the ETT⁷. To replicate the stress-absorbing qualities of dentin, short fiber-reinforced composites have been developed to be utilized as a bulk basis for the restoration of high-stress teeth. The composite everX Flow (EXF) is recommended as an ideal IOB, especially in large cavities, as it allows better stress distribution⁸. One of the most popular materials for ETT restoration is smart dentin replacement (SDR) Plus Bulk Fill Flowable, a low-viscosity flowable composite that minimizes air bubble formation and enables it to reach deep places⁹. Another common option is resin-modified glass-ionomer cements (RMGICs), which chemically bond with dentin¹⁰. The RMGICs perform a similar acid-base reaction, but with the inclusion of resins. They allow for an effective setting and greater initial strength than glass-ionomer cements¹¹. Calcium-enriched mixture (CEM), a water-based cement, is made up of calcium compounds. CEM is less toxic and more biocompatible, and is used for vital pulp treatment¹².

Despite the variety of materials available, limited data exist comparing their effects on fracture resistance (FR) when used as IOBs.

The aim of this study was to compare and evaluate the FR of ETT using SDR, EXF, RMGIC, CEM, and universal flowable composite (UFC) as IOBs. The null hypothesis was that the IOBs do not affect the FR of ETT and that there are no differences in FR offered by the five IOBs.

Methods

This *in vitro* study was conducted within four weeks, from January to February 2024, at the Department of Endodontics, Faculty of Dentistry, Gaziantep University, Gaziantep, Türkiye. This study was approved by the Ethics

Committee of Gaziantep University (No. 2023/354, from November 01, 2023).

Sample size calculation

This sample size was computed using the mean and standard deviation (SD) values reported in two previous studies^{13, 14}. Therefore, using G*Power 3.1 software (Universität Düsseldorf, Germany) and Cohen's *d* method with $\alpha = 0.05$, power of 95%, and computed effect size *f* = 2.05, a sample size of 13 was determined for each group. Five samples were chosen for the control group (CG). Thus, a total sample of 70 was determined.

Inclusion and exclusion criteria

Seventy human mandibular premolars with single root canals extracted for orthodontic procedures were chosen because they were of comparable size and had straight roots. The samples were first inspected under a stereomicroscope to ensure there were no cracks, and teeth with short and curved roots were eliminated. To rule out teeth with resorptive abnormalities and verify the existence of a single canal, intraoral periapical radiographs were also obtained. An ultrasonic scaler handpiece (Woodpecker HW-5L, Guangxi, China) with an ultrasonic scaler tip (G1) was subsequently utilized to clean all samples in order to remove calculus and debris. To avoid dehydration, the samples were then kept in distilled water for two weeks before use.

Specimen preparation

After measuring 14 mm from the root apex with a digital vernier caliper and marking it with a fine-point marker, the samples were decoronated along the marking using a low-speed handpiece with a diamond disc under water cooling. A size 10 K-type file (Dentsply Maillefer, Tulsa, USA) was inserted into the canal until it was observable through the apical foramen. The working length was determined 1 mm below this length.

Root canal preparation

Crown-down endodontic treatment of the specimens was carried out utilizing a nickel-titanium rotary instrument set (ProTaper Next, Dentsply Tulsa Dental, Tulsa, USA). A number 15 K-type file (Dentsply Maillefer, Tulsa, USA) was used to establish a glide path in the canals. In each sample, files X1 (#17.04), X2 (#25.06), and X3 (#30.04) were used in that order. During the preparation process, 2 mL of 5.25% sodium hypochlorite (NaOCl) (Wizard, Rehber Kimya San. ve Tic., İstanbul, Türkiye) was used for irrigation. After each file was replaced, 2 mL of 17% ethylenediaminetetraacetic acid (EDTA) was added. NaviTip sideport 31-gauge side perforated flushing needles (Ultradent, South Jordan, Utah, USA) were used for canal irrigation. After the root canals were prepared, the smear layer was removed by irrigating them with 3 mL of 5% NaOCl solution, followed by 3 mL of

15% EDTA for 1 min, and finally with 3 mL of 5% NaOCl solution. To ensure the effectiveness of the treatments, the root canals were lastly cleaned with 10 mL of distilled water and dried with sterile paper points (Aeconedent, Geonggi-Do, Korea).

The canals were subsequently filled with AH Plus Jet (Dentsply DeTrey, Konstanz, Germany) canal sealer and gutta-percha with 0.2% taper, according to the instructions of the manufacturer, using the lateral condensation technique. Then, the coronal 3 mm of root fillings was carefully removed using heated tools, with the exception of control specimens. By using a William's periodontal probe, this depth was verified. Microbrushes soaked with 70% ethanol were used to remove any remaining gutta-percha or sealer. Lastly, based on the IOB located above the root canal obturation, the filled specimens were split into the groups by manual allocation.

Placement of intra-orifice barriers

In the RMGIC group (n = 13), Equia Forte HT Fil (GC, Tokyo, Japan) was used. This is a high-viscosity glass ionomer restorative material consisting of fluoroaluminosilicate glass and an aqueous polyacrylic acid solution. The glass component contains SiO_2 , Al_2O_3 , CaF_2 , AlF_3 , and AlPO_4 , which undergo an acid-base reaction to form a strong ionic bond with the tooth structure. The RMGIC capsule was mixed in the amalgamator for the duration specified by the manufacturer. Then, RMGIC was inserted into the prepared canal openings and polymerized for 20 s using a light-curing device (Elipar DeepCure, 3M ESPE).

In the UFC group (n = 13), G-ænial Universal Injectable (GC, Tokyo, Japan) was used. This is a highly filled, light-cured injectable composite containing urethane dimethacrylate, bisphenol A-ethoxylate dimethacrylate, and strontium glass fillers [69 weight percent (wt%)]. The root canal orifices were etched with 37% phosphoric acid for 20 s. The surface was then cleaned with water, and extra water was removed using an air syringe. The sample was then rinsed with water and dried with air. The bonding agent (Adper Single Bond 2, 3M ESPE, St. Paul, MN, USA) was applied to the area with a microbrush and polymerized with a light-curing device for 10 s. The pre-prepared canal orifices were filled with flowable composite in 1.5 mm increments, using a 470 nm visible light curing device placed 2 mm away for 20 s, in two passes.

In the SDR Plus group (n = 13), SDR Plus (Dentsply, Sirona, Germany) material was used, which contains modified urethane dimethacrylate resin matrix and filler (68 wt%). Root canal orifices were etched for 20 s using 37% phosphoric acid prior to restoration. After that, water was used to rinse the surface, and an air syringe was employed to remove any extra water. The enamel and dentin were then coated with Adper Single Bond 2, which was light polymerized for 10 s. Then, the SDR was installed and exposed to light polymerization for 20 s.

In the CEM group (n = 13), the material used was CEM (Bioniquedent Co., Tehran, Iran), and it contains calcium oxide, calcium phosphate, calcium carbonate, and calcium sulfate. The powder and liquid portions were added according to the manufacturer's instructions. The powder was progressively combined with the liquid for 15–30 s to wet all powder particles and achieve a dense consistency with a plastic spatula. Then, a ball-shaped mass of CEM cement was taken from the mixture and gently pushed into the canal orifices with a hand instrument. A wet cotton pellet was put on the IOB and allowed to set for 1 hr.

The material EXF (GC Dental, Tokyo, Japan), used in the EXF group (n = 13), contains E-glass fibers (1–2 mm), bisphenol A-glycidyl methacrylate, triethylene glycol dimethacrylate, and barium glass filler. Before restoration, the surfaces were etched with 37% phosphoric acid, rinsed with water, and dried using an air syringe. The bonding agent (Single Bond 2) was coated and lightly polymerized for 10 s. Finally, EXF was applied and lightly polymerized for 20 s.

In the CG (n = 5), there was no gutta-percha removal or IOB application.

For full setting, the specimens were then kept for 48 hrs at 37 °C and 100% humidity. The roots' apical 5 mm were submerged in molten wax. This resulted in a periodontal ligament gap of around 0.2–0.3 mm. Then, all specimens were placed in plastic cylinder molds that were 20 mm in diameter and 20 mm in height and embedded in acrylic resin (Imicryl, Konya, Türkiye).

Fracture testing

To prevent bias, all of the aforementioned steps were completed by a single operator (IY). The operator was not blinded to the group allocation. This represents a potential source of operator bias and is acknowledged as a limitation of the study. A spherical steel insert with a diameter of 2 mm (perpendicular to the tooth's long axis) and a constant crosshead speed of 1 mm/min was used in the strength test, which was carried out using a universal testing machine (AGS-X, Shimadzu Corporation, Tokyo, Japan). Until the root broke, the loading segment with the tip was positioned in the middle of each specimen's groove opening. The moment at which a sharp decline of more than 25% of the force utilized became evident was considered a fracture¹⁵. Newtons (N) were used to record the force at fracture.

Statistical analysis

The numerical variables' conformance to the normal distribution was verified using the Shapiro-Wilk test. The analysis of variance (ANOVA) and least significant difference tests were used for analyzing normally distributed data across six groups. For the recorded forces, we derived the mean and SD. The analyses were carried out using SPSS 22.0 Windows package application (SPSS Inc., Chicago, IL, USA). The value of $p < 0.05$ was accepted as significant.

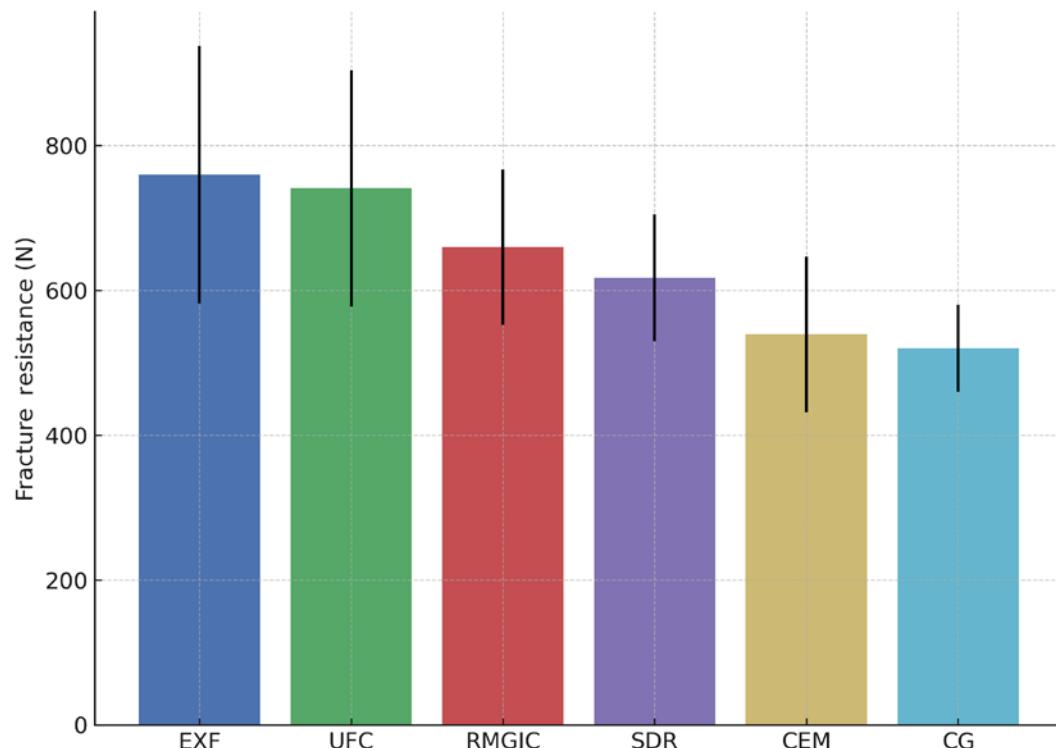
Results

There was a significant relationship between groups (Table 1 and Figure 1).

The highest mean fracture strength value (759.9 ± 177.9) among the tested groups was observed in the teeth with EXF, followed by UFC (741.2 ± 163.4). The lowest average FR value (519.6 ± 60.2) was observed in CG, and the closest value to CG (539.2 ± 107.6) was in the CEM group.

In comparing normally distributed variables across six groups, ANOVA and least significant difference tests

revealed a significant difference between the FR values obtained from the groups ($p = 0.001$). When the FR of the groups was evaluated using the pairwise comparison test, all groups except SDR and CEM showed a statistically significant difference compared to CG. The UFC group showed significantly higher FR than all groups except EXF and RMGIC, while the CEM group showed a lower FR value than all groups except SDR and CG. The EXF group showed significantly higher FR against all groups except the UFC and RMGIC groups. However, SDR showed lower FR against UFC and EXF groups. There was no significant difference between EXF, UFC, and RMGIC.


Table 1

Fracture resistance of experimental groups and statistical comparisons

Group	Mean \pm SD	Median (Min–Max)	Homogeneous subset*
EXF (n = 13)	759.9 ± 177.9	709 (527–1,098)	c
UFC (n = 13)	741.2 ± 163.4	772 (516–1,036)	c
RMGIC (n = 13)	659.8 ± 107.5	699 (461–856)	bc
SDR (n = 13)	617.5 ± 87.8	596 (501–839)	ab
CEM (n = 13)	539.2 ± 107.6	558 (399–695)	a
CG (n = 5)	519.6 ± 60.2	520 (435–605)	a

SD – standard deviation; EXF – everX Flow; UFC – universal flowable composite; RMGIC – resin-modified glass-ionomer cements; SDR – smart dentin replacement; CEM – calcium-enriched mixture; CG – control group; n – number; Min – minimum; Max – maximum.

Note. *Lowercase letters indicate statistical groups; groups sharing the same letter are not significantly different, while statistically significant differences ($p < 0.05$, analysis of variance and least significant difference test) occur between all groups with different letters, including comparisons involving multiple groups simultaneously.

Fig. 1 – Fracture resistance results.

For other abbreviations, see Table 1.

Note. The bar graph illustrates the mean fracture resistance for each experimental group, with standard deviations indicated as error bars.

Discussion

Due to extensive dentin removal, particularly in the cervical area, the larger preparation that results from the use of rotary instruments can lead to VRF³. Furthermore, dehydration and irrigant exposure weaken dentin and make it more susceptible to VRF¹⁶. Additionally, while evaluating the VRF risk of ETT, additional characteristics, including the size and curvature of the external root, as well as the form and morphology of the root canal, should be taken into account¹⁷. Strengthening the radicular part and the coronal structure should be the main priority. IOB has been suggested to lower the risk of fracture and support ETT¹³.

Using five distinct IOBs, our study estimated the FR of mandibular premolars that had undergone endodontic treatment. Fracture strength data of the test groups showed that the type of IOB used had a substantial impact on the roots' FR. According to the results, CG had the lowest FR, whereas EXF and UFC had the greatest FR. The lowest FR levels were observed in CG, which was consistent with previous research^{5, 14, 18}. Our findings also showed significant differences in FR between these groups. IOB placement of EXF, UFC, and RMGIC significantly increased the FR of ETT. Therefore, the null hypothesis of the present study, that there would be no significant difference between the tested groups, was rejected. The higher FR values observed in our research may be mostly attributable to the tested IOBs' strong adhesive qualities to dentin. This explains why RMGIC had a strong FR relative to CG and CEM, but less than the UFC, and no discernible difference in FR compared to the UFC and EXF groups in the current study. Additionally, the EXF group showed greater FR, in line with other studies^{19, 20}. The EXF group has been shown to be useful in strengthening ETT as IOB²¹. The presence of short fibers integrated into the matrix, which greatly enhanced the material's resistance to crack propagation and reduced the stress intensity at the crack tip and its unstable propagation, may have contributed to the increased FR of EXF¹⁹. However, this contrasts with the findings of Gupta et al.¹⁸, which indicated that the FR of RMGIC was greater than that of fiber-reinforced composite. This discrepancy might be attributed to the fact that in the study mentioned earlier, the fiber was employed as a separate layer (Ribbond, Seattle, Washington, USA) on the cavity floor alongside the composite filling.

Previous research has demonstrated that UFCs are more successful than RMGIC at improving FR as an IOB, as was the case in our study^{5, 13, 14}. RMGIC has an elastic modulus similar to that of dentin and a strong flexural strength. As a result, the material may bear the stress before the load is transferred to the root. Additionally, the dentin-RMGIC contact is more resistant due to its chemical connection to the dentin surface¹⁸. Compared to traditional composites, UFCs have been reported to provide increased flowability, better adaptability to the interior cavity wall, and more elasticity²². However, UFC's lower stiffness and greater polymerization shrinkage are significant disadvantages compared to composite resins²³. This may help explain why the FR of

RMGIC in the current study was not significantly different from that of UFC, showing a good FR relative to CG but still lower than UFC.

UFC showed more FR than CEM in the present research. This could be because the resin's low viscosity made it easier for UFC to adhere to the intra-orifice dentin. Compared to mineral trioxide aggregate (MTA), CEM has a smaller film thickness, a higher flow rate, and a faster setting time²⁴. Although CEM increased the FR of immature anterior teeth at 6 months²⁵, there were no significant differences between the tested groups in our study, except the CEM group. The elastic modulus of CEM is comparable to that of dentin. However, the impact of FR as IOB is minimal. MTA, which has mechanical properties consistent with CEM, provided the lowest FR in multiple studies comparing the FR of RMGIC, fiber-reinforced composite, and MTA as IOB^{14, 26}. Regardless of the type of adhesive employed, the study by Savadi Oskoee et al.²⁷ revealed that RMGIC's shear bond strength was much higher than CEM's. Since the adhesive system allows them to penetrate and interlock into surface pores and imperfections, the bonding process of CEM is most likely micromechanical. Additionally, the combination of powder and liquid alters the mechanical characteristics of the CEM, which in turn influences the FR values²⁸. Furthermore, as shown below, rather than having a favorable modulus of elasticity, CEM's inability to strengthen roots is most likely due to its weakening under stresses and its absence of bonding to dentin.

Although tooth strength is determined by the amount of tooth structure remaining, the FR could be increased by inserting a further 3 mm barrier into the root canal. Stress transmission along the length of the tooth depends on the pericervical dentin, which is situated close to the alveolar crest and extends around 4 mm coronally and apically from the crestal bone. The tooth may be prone to fracture if this pericervical dentin is lost⁵. Gao et al.²⁹ highlighted this point by stating that the cervical portion of the root experiences the greatest stress due to occlusal pressures in ETT, and that this stress increases as the instrument's taper becomes larger. To restore the missing pericervical dentin in the experimental groups, 3 mm of barrier material was used in place of gutta-percha. This enhanced FR when the restorative materials flexed under occlusal loading, dispersing the stresses equally over the dentin-restoration contact^{5, 14}. Up to 4 mm of SDR can be polymerized at once, which is 1 mm deeper than the depth required by the IOB. Additionally, it has a modified methacrylate resin that lowers the pressures generated by shrinkage via slowing down the rate of polymerization³⁰.

According to Atalay et al.³¹, ETT restored with fiber-reinforced composite (everX posterior) or bulk-fill/fluid bulk-fill, like SDR in our study, does not have a different FR than those restored with conventional nanohybrid resin composite similar to UFC. Similarly, no significant difference was found between UFC and EXF in our study. The results of our research were corroborated by Ozsevik et al.²⁰, who found that teeth with root canal therapy and those

reconstructed with fiber-reinforced composite material (everX posterior, GC, Tokyo, Japan) had fracture strength values that were quite similar to those of the intact tooth group. Even though their findings were comparable to those of our study, the aforementioned study differs in certain ways from the current investigation. First, rather than evaluating IOBs, their goal was to assess the FR of composite fillings. Additionally, they tested fillings in molars rather than uncrowned, single-rooted premolars, and they used everX posterior instead of EXF as the short fiber-reinforced flowable resin.

Within the limitations of this *in vitro* study, EXF and UFC demonstrated the highest FR and may therefore be recommended as IOB materials for ETT under high occlusal stress. EXF, containing short fibers that mimic dentin's elasticity, provides effective stress distribution and is particularly suitable for posterior teeth with wide canal openings. On the other hand, UFC offers easier handling, excellent adaptation, and lower cost, making it a practical choice for routine cases. Although RMGIC showed slightly lower resistance, its chemical adhesion and fluoride release can be advantageous in cases requiring enhanced sealing. CEM and SDR, with lower reinforcement potential, may not be ideal in teeth subject to high masticatory forces. Further long-term clinical studies are needed to evaluate the performance of these materials under cyclic loading and thermomechanical stress.

This *in vitro* study inherently has several limitations. Firstly, there was a possibility of sampling and representation bias because the study included only healthy mandibular premolars. Secondly, despite extensive efforts to standardize the form and size of the premolars, undetectable canal defects may still have been present and could have influenced the force readings. Thirdly, in the current investigation, the force was applied in a single direction and at a single spot to evaluate FR, which does not accurately

replicate intraoral environments. A fourth limitation is that the operator was not blinded to group allocation, creating the potential for operator bias. As a fifth limitation, this study applied a single, static vertical load to the fracture, which does not fully reflect the complex occlusal stresses occurring within the mouth. Cyclic loading and thermomechanical aging could have provided a more accurate simulation of clinical conditions. Therefore, the results should be interpreted with caution, and further *in vitro* studies that include dynamic and thermal fatigue are recommended. Lastly, the inability to apply the study's findings in clinical settings is another shortcoming. In addition, it is necessary to explore the possibilities of using a potential IOB candidate for further studies. Future research should include cyclic loading and other demanding simulations to replicate clinical conditions better.

Conclusion

Among the tested intra-orifice barrier materials, everX Flow exhibited the highest fracture resistance, while universal flowable composite and resin-modified glass-ionomer cements showed comparable performance. Except for smart dentin replacement and calcium-enriched mixture, all materials significantly increased fracture resistance compared with the control group. These results indicate that everX Flow, universal flowable composite, and resin-modified glass-ionomer cements may provide superior reinforcement in endodontically treated teeth, making them preferable choices in clinical practice. Further *in vitro* and clinical studies are needed to confirm their long-term performance under functional conditions.

Conflict of interest

The authors declare no conflict of interest.

R E F E R E N C E S

1. Usta SN, Tekkanat H, Sağlam Y, Aydin C. Exploring the impact of remaining tooth structure and preparation size on the fracture resistance of endodontically treated mandibular premolars. *J Dent Res Dent Clin Dent Prospects* 2025; 19(1): 23–8. DOI: 10.34172/joddd.025.42125.
2. Kılıç Y, Karataşlıoğlu E, Kaval ME. The effect of root canal preparation size and taper of middle mesial canals on fracture resistance of the mandibular molar teeth: an *in vitro* study. *J Endod* 2021; 47(9): 1467–71. DOI: 10.1016/j.joen.2021.06.002
3. Patel S, Bhava B, Bose R. Present status and future directions: vertical root fractures in root filled teeth. *Int Endod J* 2022; 55(Suppl 3): 804–26. DOI: 10.1111/iej.13737
4. Caussin E, Içart M, Ceinos R, Attal JP, Beres F, François P. Advanced material strategy for restoring damaged endodontically treated teeth: a comprehensive review. *Materials* 2024; 17(15): 3736. DOI:10.3390/ma17153736
5. Chauhan P, Garg A, Mittal R, Kumar H. A comparative evaluation of fracture resistance of endodontically treated teeth using four different intraorifice barriers: An *in vitro* study. *J Conserv Dent* 2019; 22(5): 420–4. Erratum in: *J Conserv Dent* 2020; 23(1): 112. DOI: 10.4103/0972-0707.297687.
6. Roghanizad N, Jones JJ. Evaluation of coronal microleakage after endodontic treatment. *J Endod* 1996; 22(9): 471–3. DOI: 10.1016/S0099-2399(96)80080-X.
7. Basduan S, Babaier R, Alomran D, Al-Harthi S, Al-Fihed L, Al-Abdulkarim M, et al. Effect of a unique intra-orifice barrier on the sealability and optical properties of endodontically treated teeth: An *in vitro* study. *Int J Adhes Adhes* 2025; 137: 103891. DOI: 10.1016/j.ijadhadh.2024.103891
8. Hşhad ME, Dalkılıç EE, Ozturk GC, Dogruer I, Koray F. Influence of different restoration techniques on fracture resistance of root-filled teeth: *In vitro* investigation. *Oper Dent* 2018; 43(2): 162–9. DOI: 10.2341/17-040-L.
9. Kim EH, Jung KH, Son SA, Hur B, Kwon YH, Park JK. Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites. *Restor Dent Endod* 2015; 40(2): 128–35. DOI: 10.5395/rde.2015.40.2.128.
10. Al-Hasan RM, Al-Taee LA. Interfacial bond strength and morphology of sound and caries-affected dentin surfaces bonded

to two resin-modified glass ionomer cements. *Oper Dent* 2022; 47(4): E188–96. DOI: 10.2341/21-048-L.

11. *Sidhu SK*. Glass-ionomer cement restorative materials: A sticky subject? *Aust Dent J* 2011; 56(Suppl 1): 23–30. DOI: 10.1111/j.1834-7819.2010.01293.x.
12. *Asgary S, Eghbal MJ, Parirokh M, Ghanavati F, Rahimi H*. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2008; 106(4): 609–14. DOI: 10.1016/j.tripleo.2008.06.006.
13. *Aboobaker S, Nair BG, Gopal R, Jituri S, Veetil FRP*. Effect of intra-orifice barriers on the fracture resistance of endodontically treated teeth – An ex-vivo study. *J Clin Diagn Res* 2015; 9(2): ZC17–20. DOI: 10.7860/JCDR/2015/11609.5552.
14. *Nagas E, Uyanik O, Altundasar E, Durmaz V, Cebreli ZC, Vallittu PK*, et al. Effect of different intraorifice barriers on the fracture resistance of roots obturated with resilon or gutta-percha. *J Endod* 2010; 36(6): 1061–3. DOI: 10.1016/j.joen.2010.03.006.
15. *Alkahtany MF, Almadi KH, Alahmad FA, Alshehri AM, Al-Swayed AA, AlZabran OM*, et al. Influence of root canal sealers and obturation techniques on vertical root fracture resistance. An in vitro experiment. *Appl Sci* 2021; 11(17): 8022. DOI:10.3390/app11178022
16. *De-Deus G, Cavalcante DM, Belladonna FG, Carvalhal J, Souza EM, Lopes RT*, et al. Root dentinal microcracks: a post-extraction experimental phenomenon? *Int Endod J* 2019; 52(6): 857–65. DOI: 10.1111/iedj.13058.
17. *Kim HC*. Mechanical Failure After Root Canal Shaping: Strategies for Prevention. In: *Jain PR*, editor. Common Complications in Endodontics: Prevention and Management. Switzerland: Springer; 2025. pp. 351–61. DOI:10.1007/978-3-031-83394-6_15
18. *Gupta A, Arora V, Jha P, Nikhil V, Bansal P*. An in vitro comparative evaluation of different intraorifice barriers on the fracture resistance of endodontically treated roots obturated with gutta-percha. *J Conserv Dent* 2016; 19(2): 111–5. DOI: 10.4103/0972-0707.178682.
19. *Lasila L, Keulemans F, Vallittu PK, Garoushi S*. Characterization of restorative short-fiber reinforced dental composites. *Dent Mater* 2020; 39(6): 992–9. DOI: 10.4012/dmj.2019-088.
20. *Ozverik AS, Yildirim C, Aydin U, Culha E, Surmelioglu D*. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth. *Aust Endod J* 2016; 42(2): 82–7. DOI: 10.1111/aej.12136.
21. *Seharaj H, Krishnakadatta J*. Fracture Resistance of Endodontically Treated Teeth Restored With Short Fiber Reinforced Composite and a Low Viscosity Bulk Fill Composite in Class II Mesial-Occlusal-Distal Access Cavities: An Ex-vivo Study. *Cureus* 2023; 15(8): e42798. DOI: 10.7759/cureus.42798.
22. *Tzimas K, Pappa E, Fostiropoulos M, Papazoglou E, Rabiotis C*. Highly Filled Flowable Composite Resins as Sole Restorative Materials: A Systematic Review. *Materials (Basel)* 2025; 18(14): 3370. DOI: 10.3390/ma18143370.
23. *Vouwoudi EC*. Overviews on the progress of flowable dental polymeric composites: their composition, polymerization process, flowability and radiopacity aspects. *Polymers (Basel)* 2022; 14(19): 4182. DOI: 10.3390/polym14194182.
24. *Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S*. The properties of a new endodontic material. *J Endod* 2008; 34(8): 990–3. DOI: 10.1016/j.joen.2008.05.006.
25. *Milani AS, Rahimi S, Borna Z, Jafarabadi MA, Babari M, Deljavan AS*. Fracture resistance of immature teeth filled with mineral trioxide aggregate or calcium-enriched mixture cement: An ex vivo study. *Dent Res J (Isfahan)* 2012; 9(3): 299–304.
26. *Sathorn C, Palamara JE A, Palamara D, Messer HH*. Effect of root canal size and external root surface morphology on fracture susceptibility and pattern: A finite element analysis. *J Endod* 2005; 31(4): 288–92. DOI: 10.1097/01.don.0000140579.17573.f7.
27. *Saradi Oskoei S, Bahari M, Kimyai S, Motahhari P, Eghbal MJ, Asgary S*. Shear bond strength of calcium enriched mixture cement and mineral trioxide aggregate to composite resin with two different adhesive systems. *J Dent (Téhran)* 2014; 11(6): 665–71.
28. *Shahi S, Ghasemi N, Rahimi S, Yavari HR, Samiei M, Janani M*, et al. The effect of different mixing methods on the flow rate and compressive strength of mineral trioxide aggregate and calcium-enriched mixture. *Iran Endod J* 2015; 10(1): 55–8.
29. *Gao J, He J, Fan L, Lu J, Xie C, Yu H*. Accuracy of Reduction Depths of Tooth Preparation for Porcelain Laminate Veneers Assisted by Different Tooth Preparation Guides: An In Vitro Study. *J Prosthodont* 2022; 31(7): 593–600. DOI: 10.1111/jopr.13456.
30. *Van Ende A, De Munck J, Van Landuyt KL, Poeterin A, Peumans M, Van Meerbeek B*. Bulk-filling of high C-factor posterior cavities: Effect on adhesion to cavity-bottom dentin. *Dent Mater* 2013; 29(3): 269–77. DOI: 10.1016/j.dental.2012.11.002.
31. *Atalay C, Yazıcı AR, Horuştape A, Nagas E, Ertan A, Ozgunaltay G*. Fracture resistance of endodontically treated teeth restored with bulk fill, bulk fill flowable, fiber-reinforced, and conventional resin composite. *Oper Dent* 2016; 41(5) E131–40. DOI: 10.2341/15-320-L.

Received on August 22, 2025

Revised on October 5, 2025

Revised on November 4, 2025

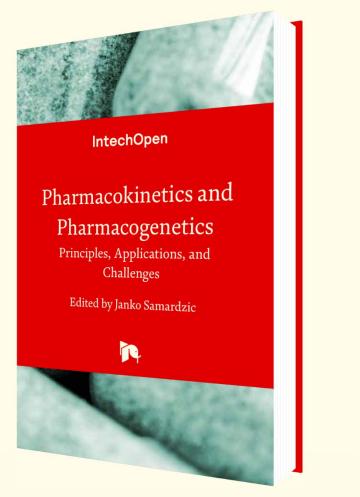
Accepted on November 26, 2025

Online First December 2025

Pharmacokinetics and pharmacogenetics – principles, applications, and challenges

Farmakokinetika i farmakogenetika – principi, primene i izazovi

Editor/Urednik: Janko Samardžić


Authors/Autori: Janko Samardžić, Elvia Mera Jiménez, Martín Martínez Rosas, Martha Edith Macías Pérez, Rodrigo Romero Nava, Karla Aidee Aguayo Cerón, Maricarmen Hernández-Rodríguez, Marianna Bacellar-Galdino, Sandeep Jain, Simon Kaja, Manish Issar, Predrag Noveški, Nadica Matevska-Geshkovska, Dijana Plaseska-Karanfilska, Aleksandar Dimovski, Neha Tandon, Milica Branković, Aleksandar Popović, Dubravka Švob Štrac

Publisher/Izdavač: IntechOpen, London, UK

Year of publication/Godina izdanja: 2025

ISBN: 978-1-83635-359-1

ISSN: 3033-3318; 102 pages

The book *Pharmacokinetics and Pharmacogenetics – Principles, Applications, and Challenges*, edited by Prof. Janko Samardžić, brings together contributions from distinguished scientists whose expertise encompasses the molecular, preclinical, and clinical aspects of drug research. It is intended for academic researchers, pharmacologists, geneticists, clinicians, and professionals engaged in drug development and precision medicine. The volume will be particularly valuable to readers seeking an integrated understanding of pharmacokinetics and pharmacogenetics, as well as to those interested in translational applications, including central nervous system drug delivery, ocular pharmacokinetics, analytical method development, and population-level pharmacogenomics.

The central aim of the book is to illustrate how pharmacokinetics and pharmacogenetics intersect to advance precision pharmacotherapy. The six chapters, each reviewed by experts in the field, present up-to-date research and review data in pharmacokinetics and pharmacogenetics – two of the most dynamic and rapidly evolving disciplines within contemporary pharmaceutical and biomedical sciences. Each contributing author provides insights grounded in rigorous scientific investigation, ensuring that the content is both methodologically sound and directly relevant to current challenges in therapeutic development. The scientific content

demonstrates a strong methodological foundation, drawing on molecular, preclinical, and clinical research, as well as advanced analytical and computational approaches. Several chapters address ongoing scientific and clinical challenges, including optimization of central nervous system drug delivery, overcoming ocular barriers, and managing interindividual variability in antipsychotic response driven by genetic polymorphisms. The integration of artificial intelligence, machine learning, and multi-omics approaches further underscores the book's alignment with emerging technological and clinical trends shaping modern precision therapeutics.

The opening chapter, “Integrating Pharmacokinetics and Pharmacogenetics in the Era of Personalized Medicine,” outlines the fundamental principles of pharmacokinetics and pharmacogenetics, emphasizing how their integration supports more precise dosing strategies, optimization of clinical trial design, and the development of safer and more effective therapeutics. The chapter also underscores the expanding role of artificial intelligence, machine learning, and pharmacogenetic databases in predicting individual drug responses. Building on this conceptual foundation, Chapter 2, “Pharmacokinetic Considerations for Drugs Targeting the Central Nervous System (CNS),” addresses one of the most complex and clinically relevant domains of pharmacokinetics. It examines the intricate interplay between drug physico-

chemical properties, the blood–brain barrier, and CNS pharmacodynamics. The chapter provides a structured overview of how factors such as lipid solubility, protein binding, active transport mechanisms, and pathological alterations in the blood–brain barrier permeability influence CNS drug disposition. The chapter also discusses emerging strategies to overcome these barriers, including nanocarrier-based delivery systems. Chapter 3, “Ocular Pharmacokinetic Studies: Challenges and Best Practices,” focuses on another organ system in which distinct anatomical and physiological characteristics significantly affect drug disposition. The chapter highlights the limitations of extrapolating systemic pharmacokinetic data to ocular exposure and offers a comprehensive discussion of experimental and computational methodologies. It outlines best practices in study design, sample collection, and pharmacokinetic modeling, emphasizing the translational importance of understanding intraocular drug kinetics. Chapter 4, “Development and Validation of an HPLC–PDA Method for Quantitative Bioanalysis of Curcuminoids and Its Application to Preclinical Pharmacokinetics,” addresses the analytical dimension of pharmacokinetic research. It describes the development and validation of a robust high-performance liquid chromatography–photodiode array (HPLC–PDA) method for the simultaneous quantification of curcuminoids, bioactive compounds with considerable therapeutic potential but limited bioavailability. Chapter 5, “Comprehensive Pharmacogenetic Allele Landscape from Whole Exome Sequencing: Single-Center Cohort Analysis in the Population of North Macedonia,” extends the focus from molecular analysis to population-level pharmacogenetics. Utilizing whole exome sequencing data, this chapter presents a comprehensive pharmacogenetic landscape of the population, identifying both common and novel variants with po-

tential clinical relevance. The final chapter, “The State of the Art: Pharmacogenomics, Multi-Omics, and Translational Barriers in Antipsychotic Therapy,” rounds the discussion off by applying pharmacogenetics concepts to one of the most challenging areas of clinical pharmacology – neuropsychopharmacology. It synthesizes current knowledge on key metabolic enzymes, receptor polymorphisms, and emerging multi-omics data that collectively influence therapeutic response and clinical outcomes.

Together, the chapters in this volume demonstrate that the integration of pharmacokinetics and pharmacogenetics is not merely a theoretical concept but a necessary progression toward precision pharmacotherapy. The multidisciplinary perspective further promotes collaboration across pharmacology, genetics, and clinical sciences. Certain limitations should also be noted, such as the specialized nature of some chapters focusing on ocular pharmacokinetic methods or HPLC–PDA analytical techniques, which may reduce accessibility to readers without a strong technical background. However, given the book’s target audience, primarily researchers and specialists, this limitation is understandable and does not diminish the overall value. In summary, *Pharmacokinetics and Pharmacogenetics – Principles, Applications, and Challenges* offers a cohesive, informative, and methodologically rigorous examination of two foundational disciplines driving the advancement of personalized medicine.

The book is available both in print and as a freely accessible online edition on the following link: <https://www.intechopen.com/books/1004701>

Prof. Silva Dobrić, PhD

INSTRUCTIONS FOR AUTHORS

Before submitting a manuscript for consideration for publication in the journal *Vojnosanitetski pregled* (VSP), authors are required to carefully read the Instructions for Authors in order to prepare the manuscript in accordance with the journal's guidelines.

A manuscript that does not meet the requirements of these instructions cannot be considered and will be returned to the authors for completion and correction.

Upon acceptance of the manuscript for publication in VSP, the authors transfer their copyright to the journal's publisher, the Ministry of Defense of the Republic of Serbia, University of Defense.

VSP adheres to the recommendations of the International Committee of Medical Journal Editors (ICMJE), *Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals* (available at <https://www.icmje.org/recommendations/>).

VSP is available in open access mode. All articles may be downloaded free of charge from the journal's website and used in accordance with the Creative Commons Attribution-ShareAlike (CC BY-SA) license (<https://creativecommons.org/licenses/by-sa/4.0/deed.en>).

SENDING MANUSCRIPTS

The manuscript and all accompanying materials should be submitted as a single document (with all appendices incorporated into the text and placed at the end of the manuscript after the References section), exclusively in electronic form via the Asestant submission system. In order to preserve quality, submitting the images as separate files is also recommended to avoid image compression and potential loss of quality, since Word may reduce their resolution. All authors and reviewers must be registered system users with a unique email address. Registration is possible at: <http://asestant.ceon.rs/index.php/vsp/user>. The technical guide for using the electronic submission system is available at: <https://asestant.ceon.rs/index.php/vsp/about/submissions>.

If you encounter any problems submitting your manuscript via the Asestant platform, you can contact the journal's Editorial Office for assistance by sending an email to: vsp@vma.mod.gov.rs.

GENERAL INSTRUCTIONS

VSP publishes manuscripts that have not been previously published, in whole or in part, and that are not under consideration for publication or have not been accepted for publication in any other journal.

VSP does not consider manuscripts that have been previously published as preprints.

The journal accepts manuscripts whose results have been previously presented at scientific or professional meetings and published as abstracts, provided that these results have not been published with a DOI (e.g., an extended abstract in a journal supplement).

If part of the results presented in the submitted manuscript has previously been reported at a scientific/professional meeting or is part of a doctoral dissertation, the Submission Letter to the Editorial Board must specify the official name of the meeting, its location and date, and indicate whether the presented results have been published and in what form (e.g., same or different title or abstract). This information should also be clearly stated in a Note at the end of the manuscript.

Manuscripts are published in English. Certain categories of articles (e.g., history of medicine/dentistry/pharmacy) may, at the discretion of the VSP Editorial Board, be published in Serbian. All manuscript categories, except for Editorials, Letters to the Editor, Research Letters, Book Reviews, and Reports from Scientific or Professional Meetings, must include abstracts in both Serbian and English (as part of the manuscript). For details on the structure and length of the abstract, see the Abstract section of these Instructions.

Manuscripts should be prepared using Microsoft Word, with Times New Roman font, size 12 pt, and line spacing 1.5. Set the page size to A4, with a left margin of 4 cm and the remaining three margins 2 cm each. Text should be typed without hyphenation, and only one space should follow each punctuation mark. If special characters (symbols) are used in the text, the Symbol font should be applied.

References cited in the text should be indicated with Arabic numerals in superscript, in the order in which they appear.

Pages should be numbered consecutively in the bottom right corner, starting from the first page (excluding the title page).

When writing in English, follow the American English language standard. The International System of Units (SI) must be used, except for blood pressure (mm Hg) and temperature (°C).

Use standard abbreviations throughout the text. Avoid abbreviations in the title and abstract unless necessary. At their first mention, provide the full term followed by the abbreviation in parentheses; thereafter, use only the abbreviation in both the abstract and the main text. Do not use abbreviations in the Conclusion section (excluding the abstract).

Do not use commercial names of drugs or other products; if necessary, the generic name must also be provided. Devices and equipment should be referred to by their trade names, with manufacturer details (name and location) provided in round brackets. If labels combining letters and numbers are used in the text, ensure that superscript or subscript numbers are written precisely.

Avoid using bold or italic fonts, as they are reserved for subheadings. Exceptions include terms that must be italicized, such as gene names or foreign words in Latin.

Study groups must be clearly defined and consistently named throughout the manuscript. Use a single, consistent term for the same concept. In the Results section, avoid sentences beginning with phrases like "Table X shows" or "Figure X illustrates". Instead, the sentence should describe the result, with the table or figure reference placed in parentheses at the end of the sentence. Sentences should not begin with abbreviations, numbers, or dates. Avoid overly long sentences that reduce clarity; favor short, clear sentences. The Conclusion should be written with

new sentences, without repeating previously stated ones. Translation of manuscripts into English using Google Translate may lead to misunderstandings and is therefore not recommended.

When selecting keywords, use Medical Subject Headings – MeSH (<https://www.nlm.nih.gov/mesh/meshhome.html>). Keywords in the accepted manuscript cannot be altered by the authors, as they are descriptors from the Thesaurus used by professional indexers.

REQUIRED ACCOMPANYING DOCUMENTS

AUTHOR STATEMENT AND AUTHORSHIP

For every manuscript submitted for consideration for publication in VSP, the author(s) must provide an *Authorship Statement Form (ASF)* confirming that the work has not been previously published and is not simultaneously under consideration for publication in another journal. The ASF must also confirm that all authors meeting the authorship criteria have read and approved the manuscript, and provide contact information for all authors (email address and mobile phone number). In this form, authors must declare any potential conflicts of interest or the absence thereof. All authors must sign the ASF by hand.

For additional information on different types of conflicts of interest, see the recommendations of the World Association of Medical Editors – WAME: <http://www.wame.org>.

VSP follows the authorship criteria recommended by ICMJE (<https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html>). Authorship is based on fulfilling all four given criteria: substantial contributions to the conception of the work, acquisition of data or analysis/interpretation of data; critical revision of the manuscript for important intellectual content; approval of the final version of the manuscript to be published; accountability for all aspects of the published work. All other contributors who participated in the work but do not meet the authorship criteria should be listed in the Acknowledgements, specifying their contribution. Individuals mentioned in the Acknowledgements must provide written consent.

ETHICAL APPROVAL

All research involving humans and/or human material must be conducted in accordance with the ICMJE recommendations (<https://www.icmje.org/recommendations/browse/roles-and-responsibilities/protection-of-research-participants.html>) and the Declaration of Helsinki, 2024 revision (<https://www.wma.net/policies-post/wma-declaration-of-helsinki/>). Authors are required to submit a scanned copy of the Ethics Committee (EC) approval from the competent institution that approved the study, showing the date of issuance and the subject of the research, along with the manuscript. The EC approval should be submitted in the original language and in English (a certified copy is acceptable).

The Methods section must indicate that the study was approved by the relevant EC, including the name of the institution and the approval number, and that it was conducted in accordance with ethical principles for research involving humans and/or human material.

Patient anonymity must be protected following ICMJE recommendations. For research involving patient data that could allow direct or indirect identification, authors must obtain written informed consent from the patient, state in the manuscript that consent was obtained, and provide it to the Editorial Board if requested.

For research involving animals, authors must provide approval from the relevant EC ensuring compliance with international standards for the use of laboratory animals in research.

The Editorial Board reserves the right to reject manuscripts deemed not conducted in accordance with international ethical standards.

REPRODUCTION OF PREVIOUSLY PUBLISHED OR UNPUBLISHED THIRD-PARTY COPYRIGHTED MATERIAL

If previously published illustrations (photographs, diagrams, etc.) are used, the source must be cited, and permission must be obtained from the journal in which they were originally published, granting approval for their use in VSP. If unpublished third-party illustrations (photographs, diagrams, etc.) are used, permission must be obtained from the original author(s) for publication in VSP.

PLAGIARISM

Since 2012, all manuscripts submitted to VSP are checked for potential (self-)plagiarism using SCIndeks Assistant – Cross Check (iThenticate). Manuscripts found to contain (self-)plagiarism will be rejected. Depending on the extent and type of detected (self-)plagiarism, authors may be banned from publishing in VSP for varying durations. Relevant authorities at the authors' institutions and appropriate professional associations will also be notified.

USE OF AI

Generative artificial intelligence (AI) or AI-assisted technologies may be used only in compliance with the principles of transparency (the use of AI must be clearly stated in the manuscript), accountability (authors remain fully responsible for the accuracy and originality of the content), verifiability (all participants in the publishing process must verify that AI has not introduced fabricated data, citations, or claims), and confidentiality (authors and reviewers are prohibited from uploading manuscripts submitted to VSP to public AI services).

The use of AI tools is permitted only for limited linguistic and technical interventions in the manuscript text: grammar and spelling correction, stylistic refinement of the authors' text, assistance with formatting, and technical assistance (such as code correction). Authors may use AI tools exclusively to create AI-assisted, but not AI-generated content.

Authors who have used AI-assisted content are required to fully and accurately disclose the use of AI tools (the exact name of the AI tool, date of access, prompts used, and purpose of use), guarantee the originality of the

scientific contribution, avoid any fabrication or manipulation, and comply with the rules of scientific ethics. Information on AI use should be stated in the Methods or Acknowledgements section.

Using AI tools is prohibited for the following: generating substantial portions of the manuscript content; creating scientific ideas, data, or results; analyzing or interpreting results; formulating conclusions; modifying images, tables, or graphs (including graphical abstracts); altering data or references.

Any unequivocally established improper use of AI will result in rejection of the manuscript.

AI may not under any circumstances be an author or co-author, nor may it be cited as an author in the References section.

To protect confidentiality, no part of unpublished research submitted to VSP may be entered into a large language model by authors or reviewers.

Authors who have used any AI tools are required to submit an [AI Use Statement](#) when submitting the manuscript.

TYPES OF MANUSCRIPTS

VSP publishes the following categories and types of manuscripts and communications: Editorial, Original Article, Preliminary Report, Short Report, Case Report and Case Series, General (Narrative) Literature Review, Mini-Review, Systematic Literature Review, Meta-Analysis, Systematic Literature Review with Meta-Analysis, Current Topic, In Focus, Article on the History of Medicine/Dentistry/Pharmacy, Letter to the Editor, Research Letter, Clinical Research, Congress and Scientific Meeting Report, Book Review, In Memoriam, and other contributions.

ORIGINAL ARTICLE

An Original Article presents new and significant findings in a specific field, with a detailed description of the research methods used, the results obtained, and the conclusions drawn. The reference list should include the most recent and most relevant references in the field.

PRELIMINARY REPORT

A Preliminary Report presents research that has not yet been completed, with findings that require further investigation and validation before final conclusions can be drawn, but where the obtained information is of interest to the scientific and professional community. It contains all sections of an Original Article, but in a substantially abbreviated form. Authors are encouraged to subsequently publish a full Original Article with complete, validated data and a comprehensive analysis.

SHORT REPORT

A Short Report presents a completed research study that is small in scope, narrowly focused, and has clear conclusions based on the presented results. It includes all sections of an Original Article, but in a substantially abbreviated form. It is considered the final publication of that specific, limited study and cannot be republished as a full-length article (although follow-up research building on it is encouraged).

REVIEW ARTICLES

GENERAL (NARRATIVE) LITERATURE REVIEW

A General (Narrative) Literature Review provides a review, critical analysis, and synthesis of existing scientific knowledge on a selected topic. Authors cover all available relevant literature over a defined time period, present the results of relevant studies, identify gaps, limitations, or controversies, and indicate directions for future research, offering their own perspective on the issue in the form of concluding remarks.

Authors of this category of article should have published at least five papers in peer-reviewed journals (M20) in the field of the review topic.

MINI-REVIEW ARTICLE

A Mini-Review provides a concise overview of the existing literature and the most recent advances within defined aspects of a particular research field, as well as its new and/or current directions of development.

SYSTEMATIC LITERATURE REVIEW

A Systematic Literature Review synthesizes previously published studies on a specific topic using clearly defined and pre-established methodological procedures for study selection and evaluation. The author must use relevant databases, define inclusion and exclusion criteria, and apply a transparent methodology.

META-ANALYSIS

A Meta-Analysis uses statistical methods to combine quantitative data from multiple primary studies in order to identify overall trends and assess the strength of evidence on a specific topic. Authors must use relevant databases, define inclusion and exclusion criteria, and apply a transparent and reproducible methodology. The research question must be clearly defined using the PICOS framework, and selection guidelines and a study flow diagram (PRISMA) must be provided.

SYSTEMATIC LITERATURE REVIEW WITH META-ANALYSIS

A Systematic Literature Review with Meta-Analysis combines qualitative and quantitative synthesis, using statistical techniques to summarize quantitative results and qualitative synthesis for descriptive/narrative findings. Authors must use relevant databases, clearly define inclusion and exclusion criteria, and apply a transparent and reproducible methodology. The research question must be clearly defined according to the PICOS framework, with specification of the reporting guidelines used (e.g., PRISMA) and inclusion of a PRISMA flow diagram showing study selection.

CURRENT TOPIC

A Current Topic addresses a contemporary, unresolved, or controversial issue of theoretical and practical importance, presenting the authors' own research

results or the most recent important data from the literature. The structure of the article is flexible, and brief concluding remarks with a clear message are encouraged.

IN FOCUS

An In Focus article provides a thematic, focused analysis or a brief overview of a scientific issue within the journal's scope, addressing a topic of significance for the scientific community and broader professional audience.

CASE REPORTS

CASE REPORT and CASE SERIES (≥4, ≤9)

Case reports or case series present cases with rare or unusual diagnoses, diagnostic processes, treatment strategies, clinical courses, or treatment outcomes that may be useful for clinical practice and medical education. The CARE guidelines should be followed when preparing the manuscript (<https://www.care-statement.org/writing-a-case-report>). Written informed consent from the patient is mandatory.

EDITORIAL

Editorials are non-peer-reviewed texts written by the Editor-in-Chief and/or members of the Editorial Board, intended to announce a new volume, special issues, or content of significance for the profession and/or institutions served by the journal, as well as invited editorial texts. Editorials should not contain unpublished or original data, and must include a statement of conflict of interest.

LETTER TO THE EDITOR

A non-peer-reviewed comment or critique of a paper published in VSP. It is written in a free format, with optional citation of relevant literature, and must not contain unpublished results. It is published at the discretion of the Editor-in-Chief.

RESEARCH LETTER

A Research Letter is a short report of original research, containing Introduction, Methods, Results, and Discussion in a condensed form (without separate sections or subheadings) and up to 2 supplementary items (tables/figures). It does not include an abstract or keywords, but must meet all general manuscript requirements for consideration, including the peer-review process.

HISTORY OF MEDICINE/STOMATOLOGY/PHARMACY

Manuscripts presenting material relevant to elucidating specific events and/or portraying notable figures in the history of medicine/stomatology/pharmacy, with particular emphasis on military medicine/stomatology/pharmacy.

CLINICAL RESEARCH

Clinical Research includes original randomized controlled trials and observational studies assessing the impact of one or more interventions or measures on human health outcomes, clinical practice, or health policy.

Manuscripts must be prepared in accordance with international guidelines (e.g., CONSORT – <https://www.consort-statement.org/> or STROBE – <https://www.strobe-statement.org/>) and be registered in a recognized public registry (e.g., ClinicalTrials.gov).

BOOK REVIEW

A Book Review includes bibliographic details of the publication (authors, original title, publisher, place, and year of publication), a brief summary, and critical comments on the content, style, and significance of the book in the relevant field. The manuscript must not exceed 2 pages.

SCIENTIFIC MEETING REPORT

A Scientific Meeting Report presents the activities of a scientific or professional meeting, highlighting the most important presentations, conclusions, or recommendations relevant to the wider readership of VSP.

MANUSCRIPT LENGTH

A complete manuscript consists of: title page, abstracts in Serbian and English with keywords, main text, acknowledgements (if applicable), reference list, and supplementary material (tables, figures, charts, diagrams, drawings).

For Original Article, General (Narrative) Literature Review, Systematic Literature Review, Meta-Analysis, and Systematic Literature Review with Meta-Analysis, the manuscript length may not exceed 5,000 words.

For Mini-Review, Preliminary Report, Short Report, Case Report, Case Series, Current Topic, Clinical Research, and History of Medicine/Stomatology/Pharmacy, the manuscript length may not exceed 3,000 words.

Manuscripts in other categories/sections may have a maximum of 1,500 words.

MANUSCRIPT PREPARATION

TITLE PAGE

The first page of the manuscript should include the following:

1. Title of the manuscript without abbreviations;
2. Full names of all authors (without academic titles, but with ORCID numbers included for those who have them) with symbols assigned in the following order: *, †, ‡, §, ||, ¶, **, ††... etc.;
3. Full official names of the institutions where the authors work, including city and country of the institution (the symbols * †, ‡, §, ||, ¶, **, ††... etc. correspond to the institutions of each author);
4. At the bottom of the page, provide the name and surname, postal address, email address, and phone number (mobile/Viber or WhatsApp) of the author responsible for correspondence.

ABSTRACT

The abstract and keywords should be provided on the second page of the manuscript. The abstract should be written in short and clear sentences. For the

categories Original Article, Preliminary Report, Short Report, Systematic Literature Review with Meta-Analysis, Meta-Analysis, and Clinical Research, the abstract must be structured and include the following sections: Introduction/Aim, Methods, Results, Conclusion. Each section should be written as a separate paragraph beginning with a bolded heading. The most important results should be presented, including numerical values and the level of statistical significance. The conclusion must be directly related to the study results. The abstract must not exceed 300 words.

For the categories Case Report and Case Series, the abstract should have the following structure: Introduction (with the aim stated in the last sentence), Case Report, Conclusion. Each section should be written as a separate paragraph beginning with a bolded heading. The abstract must not exceed 250 words.

For all other manuscript categories: General (Narrative) Literature Review, Mini Review, Systematic Literature Review, Current Topic, In Focus, and History of Medicine/Stomatology/Pharmacy, the abstract is unstructured and must not exceed 200 words.

Care should be taken in ensuring that the Serbian and English versions of the abstract are accurate and precise translations of each other. No sentence may appear in one version without being translated into the other.

KEYWORDS

Below the abstract, list five to seven relevant keywords or phrases that indicate the content of the manuscript. It is recommended to avoid repeating words from the title of the paper. When selecting keywords, use Medical Subject Headings (MeSH) (<https://www.nlm.nih.gov/mesh/meshhome.html>).

STRUCTURE OF THE MAIN TEXT

Original Articles, Preliminary Reports, Short Reports, Meta-Analyses, Systematic Literature Reviews with Meta-Analysis, and Clinical Research papers must include the following sections: Introduction (a brief overview of the research topic, with the study aim stated in the final paragraph); Methods (a precise description of participant selection and applied methods, including statistical methods, and the approval number of the competent Ethics Committee); Results (presented in a logical order, without duplicating the same results in multiple forms); Discussion (without repeating data already presented in the Results section; only the obtained findings should be discussed, placing them in the context of other relevant studies; the discussion and conclusions should be linked to the study aims, and study limitations should be highlighted if necessary); Conclusion (derived directly from the study results); Acknowledgements (if applicable); References.

Manuscripts in the categories General (Narrative) Literature Review, Mini-Review, Systematic Literature Review, Current Topic, and In Focus should contain the following sections: Introduction (with appropriate subheadings), Conclusion, and References.

Manuscripts in the categories Case Report and Case Series should include the following sections: Introduction (the aim of the paper should be stated in the final paragraph of the Introduction), Case Report (the patient's identity must remain anonymous), Discussion, and References.

A Case Report must not have more than five authors.

QUESTIONNAIRES

All questionnaires used as measurement instruments for any of the investigated parameters must be translated into the language spoken by the study participants, with evidence provided of their validation and cultural adaptation to the participants' setting.

TABLES AND FIGURES

Tables and figures, the number of which should be appropriate to the length of the text, should be placed at the end of the main manuscript text, after the References. The exact position of each item should be clearly indicated in the text. The final placement of tables and figures will be determined during manuscript preparation for publication.

Tables

The title should be placed above the table, and explanations (the legend) below it. Tables should be numbered with Arabic numerals in the order in which they appear in the text. Tables must be created exclusively in the Microsoft Word program using the menu Table-Insert-Table, with the exact number of rows and columns defined. Use Times New Roman font, 12-point size, single spacing. Tables must be clear and include all elements necessary for the proper interpretation of the data presented. If the displayed values have ranges or reference values, these must be specified.

In the legend below the table, all abbreviations used in the table and all symbols (e.g., superscript letters or bolded values) must be explained. In addition, the applied statistical methods must be clearly specified.

Figures (Illustrations)

Figures include all forms of graphical material (photographs, drawings, diagrams, and graphs). Figures should be embedded in the manuscript at the end of the text, after the References and after the Tables (if any). Figures should be numbered with Arabic numerals in the order in which they appear in the text. Capital letters A, B, C, etc., should be used to designate parts of multipart figures. Letters, numbers, and symbols must be clear, consistent, and of sufficient size to remain legible after reduction. All elements shown in figures must be saved as images (not as editable graphic objects) so that their position cannot be altered, ensuring the accuracy of the data presented. Only digital images with a minimum resolution of 300 dpi and in JPEG, PNG, or PDF format are accepted. Figures that do not meet these requirements will not be accepted for publication. The dimensions of submitted figures should be approximately the same as the dimensions at which they will be published. If authors are unable to provide digital photographs, original images should be scanned at a resolution of 300 dpi and at

their original size and submitted in that form. All text in diagrams and graphs should be written in a sans-serif font for better readability (e.g., Arial, Helvetica), with a font size of no less than 10 pt. Measurement units and scales must be clearly indicated. Decimal numbers in graphs must be presented with a decimal point, and thousands should be separated by a comma (e.g., 1,234.56).

Video supplements (illustrations of the manuscript) may last 1–3 minutes and should be submitted in AVI or MP4 (FLV) format. A separate still image representing the video (video thumbnail) must also be provided for use in the electronic edition and publication in the printed edition, along with a link to the platform where the video is already hosted.

In the legend below each illustration, all abbreviations, symbols, numbers, or letters used to explain individual parts of the figure must be defined. For graphs, the applied statistical methods should be specified where appropriate; for photomicrographs, details of the staining method and magnification must be provided.

If photographs of persons (patients) are presented, the face must be blurred or written consent must be obtained from the person depicted. In imaging materials (X-rays, CT scans, ultrasound images, etc.), all information that could identify the patient must be removed. If a figure has been previously published, the source must be cited, and written permission must be obtained if the material is protected by copyright.

ABBREVIATIONS

Abbreviations should be used only when necessary, primarily for very long names of chemical compounds or for terms that are already widely recognized in abbreviated form (e.g., DNA). For each abbreviation—except standard units of measurement—the full term must be given at its first occurrence in the text (including the abstract). The use of abbreviations should be avoided in the title and abstract; in the title, abbreviations should be used only if absolutely necessary. For terms mentioned more than 3 times in the text, introducing appropriate abbreviations is recommended.

DECIMAL NUMBERS

In manuscripts written in English, decimal numbers should be written with a decimal point (e.g., 22.7), whereas in manuscripts written in Serbian, a comma should be used (e.g., 22,7). Whenever possible, numbers should be rounded to one decimal place and reported consistently throughout the manuscript (e.g., if one value is 32.2, all others should also be rounded to one decimal place, e.g., 32.0).

UNITS OF MEASUREMENT

Length, height, weight, and volume should be expressed in metric units (meter – m, kilogram (gram) – kg (g), liter – L) or their subunits. Temperature should be expressed in degrees Celsius (°C), and blood pressure in millimeters of mercury (mm Hg). Results of clinical and biochemical measurements should be reported in metric units according to the International System of Units (SI).

ACKNOWLEDGEMENTS

The contributions of individuals who should be acknowledged but do not meet the criteria for authorship should be stated. Financial support (sponsorships, grants, equipment, etc.) should be disclosed, as well as the name of the project within which the research was conducted.

STATISTICAL ANALYSIS

In the Methods section, the applied statistical methods should be described in sufficient detail to allow verification of their correct use and reproduction of the analysis. Results must be presented numerically and clearly, with appropriate measures of variability and reliability (e.g., standard deviation, standard error, confidence interval). The type of study should be specified, and the manner in which it was conducted should be described. Inclusion and exclusion criteria must be stated. The software and the version of the computer program used for statistical data analysis should be reported. In the Results section, as well as in the legends of tables and/or figures, the statistical method used to analyze the presented results must be indicated. The *p* values should always be written with a leading zero (e.g., *p* > 0.05, not *p* > .05).

REFERENCES

References should be numbered with Arabic numerals according to the order of their first appearance in the text (including tables and figure legends). It is recommended that the majority of cited references be published within the last ten years. At least 80% of the cited references should be original research articles, while books, book chapters, and review articles should account for no more than 20% of the total number of references. All references, regardless of the language of the original source, must be cited in English, with the original language indicated in parentheses after the reference.

All data on the references must be accurate, and the cited works should be easily accessible to readers. A DOI number must be provided for each reference. Citation of articles published in journals indexed in Current Contents, Index Medicus (MEDLINE), Excerpta Medica, Scopus, and Web of Science is recommended.

Citation of abstracts, secondary publications, oral communications, unpublished works, official or confidential documents, Wikipedia, preprints and in press articles, retracted articles, and articles published in predatory journals is not permitted.

When citing websites, the homepage must not be cited; instead, the specific webpage from which the information was obtained must be referenced. Each cited reference must be available for online verification. If a reference is not available online (e.g., archival material), the author must provide the source from which the cited material was obtained, or submit a photographed or scanned copy of the document by emailing it to: strliteratura@gmail.com.

References should be formatted according to the Vancouver style established by the ICMJE (https://connect.ebsco.com/s/article/Citing-Articles-in-Vancouver-ICMJE-Style?language=en_US).

Citation examples:**Article with 1 to 6 authors**

Nikolić A, Biočanin V, Rančić N, Dušpara M, Đurić D. Serbian translation and validation of the SF-36 for the assessment of quality of life in patients with diagnosed arterial hypertension. *EABR Exp Appl Biomed Res* 2023; 24(3): 227-34. DOI: 10.2478/sjcr-2020-0073

Article with more than 6 authors

Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. *J Clin Sleep Med* 2017; 13(3): 479-504. DOI: 10.5664/jcsm.6506

Volume with a Supplement

Smith JA, Brown LM. Effects of vitamin D on immune response. *J Nutr Sci* 2024; 15(Suppl 2): S45-53.

Issue with a Supplement

Zhou Q, Shi R, Kopjar B, Wang H, Chen D, Li H, et al. Adjacent Intervertebral Disc Changes in Patients with Isobar Semirigid Dynamic Stabilization System. *Global Spine J* 2017; 4(1 Suppl): s-0034-1376699.

Volume with Part (Pt)

Ozben T, Nacitarhan S, Tuncer N. Plasma and urine sialic acid in non-insulin dependent diabetes mellitus. *Ann Clin Biochem* 1995; 32(Pt 3): 303-6.

Issue with Part (Pt)

Poole GH, Mills SM. One hundred consecutive cases of flap lacerations of the leg in ageing patients. *N Z Med J* 1994; 107(986 Pt 1): 377-8.

Issue with no Volume

Turan I, Wredmark T, Fellander-Tsai L. Arthroscopic ankle arthrodesis in rheumatoid arthritis. *Clin Orthop* 1995; (320): 110-4.

No Volume or Issue

Browell DA, Lennard TW. Immunologic status of the cancer patient and the effects of blood transfusion on antitumor responses. *Curr Opin Gen Surg* 1993; 325-33.

Pagination with Roman numerals

Fisher GA, Sikic BI. Drug resistance in clinical oncology and hematology. Introduction. *Hematol Oncol Clin North Am* 1995; 9(2): xi-xii.

Book**Printed Book**

Ritter JM, Flower RJ, Henderson G, Loke YK, MacEwan D, Robinson E, et al. Rang & Dale's Pharmacology. 10th ed. London: Elsevier; 2023. p. 3630.

Book in electronic format

Shreeve DF. Reactive attachment disorder: a case-based approach [Internet]. New York: Springer; 2012 [cited 2012 Nov 2]. 85 p. Available from: <http://dx.doi.org/10.1007/978-1-4614-1647-0>

Chapter**In an edited book**

Metcalf CS, Smith MD, Wilcox KS. Pharmacotherapy of the Epilepsies. In: Brunton LL, Knollmann BC, editors. Goodman & Gilman's The pharmacological basis of therapeutics. 14th ed. NY: McGrawHill; 2023. p. 385-411.

In an edited electronic (online) book

Halpen-Felsher BL, Morrell HE. Preventing and reducing tobacco use. In: Berlan ED, Bravender T, editors. Adolescent medicine today: a guide to caring for the adolescent patient [Internet]. Singapore: World Scientific Publishing Co.; 2012 [cited 2012 Nov 3]. Chapter 18. Available from: http://www.worldscientific.com/doi/pdf/10.1142/9789814324496_0018

Website**Homepage**

Diabetes Australia. Diabetes globally [Internet]. Canberra ACT: Diabetes Australia; 2012 [updated 2012 June 15; cited 2012 Nov 2]. 85 p. Available from: <http://www.diabetesaustralia.com.au/en/Understanding-Diabetes/Diabetes-Globally/>

Part of a website

Australian Medical Association [Internet]. Barton ACT: AMA; c1995-2012. Junior doctors and medical students call for urgent solution to medical training crisis; 2012 Oct 22 [cited 2012 Nov 2]; [about 3 screens]. Available from: <https://ama.com.au/media/junior-doctors-and-medical-students-call-urgent-solution-medical-training-crisis>

Conference Proceedings

Kimura J, Shibusaki H, editors. Recent advances in clinical neurophysiology. Proceedings of the 10th International Congress of EMG and Clinical Neurophysiology; 1995 Oct 15-19; Kyoto, Japan. Amsterdam: Elsevier; 1996.

Article from Conference Proceedings

Bengtsson S, Solheim BG. Enforcement of data protection, privacy and security in medical informatics. In: Lun KC, Degoulet P, Piemme TE, Rienhoff O, editors. MEDINFO 92. Proceedings of the 7th World Congress on Medical Informatics; 1992 Sep 6-10; Geneva, Switzerland. Amsterdam: North-Holland; 1992. p. 1561-5.

Dissertation

Knežević D. The importance of decontamination as an element of complex therapy of poisoning with organophosphorous compounds [Ph.D. Thesis]. Belgrade: School of Veterinary Medicine; 1988. (Serbian)

Other published articles**News article**

Vujadinović J. The inconsistency between federal and republican regulation about pharmacies. In between double standards. *Borba* 2002 February 28; p. 5. (Serbian)

Holy Bible

Serbian Bible. Belgrade: British and Foreign Biblical Society; 1981. Book of Isaiah 2: 19-22. (Serbian)

Dictionaries and similar references

Kostić AD. Multilingual Medical Dictionary. 4th Ed. Belgrade: Nolit; 1976. Erythrophobia; p. 173-4.

Other examples of citing publications can be seen at https://www.nlm.nih.gov/bsd/uniform_requirements.html

ARTICLE PUBLICATION FEES

The publication fee is to be paid after the manuscript has been accepted for publication. Decision on accepting the manuscript must be confirmed at a VSP Editorial Board meeting. Manuscripts for which the fee has not been paid will not be published.

Payment of the fee does not guarantee that the manuscript will be published in VSP.

All authors are required to pay the Article Processing Charge to cover the costs of language editing, as well as professional and technical processing of the manuscript, and its publication. Domestic authors pay 5,000 RSD, and international authors pay 150 EUR.

Institutional subscription (10,000 RSD) applies only to institutions that wish to receive physical copies of the journal's monthly issues. In the year the subscription is paid, authors can submit an unlimited number of manuscripts to VSP.

Copies of the payment receipt must be sent to strliteratura@gmail.com for record-keeping.

The following are exempt from the subscription fee: VSP reviewers (a manuscript ID or title of the reviewed paper must be provided), doctoral students (with proof of enrollment in the current academic year), and editors. The Editorial Board reserves the right to reduce or waive the subscription fee upon a justified request from the author.

For any additional information, you can contact the addresses and phone numbers listed below.

Vojnosanitetski pregled Editorial Office

17 Crnotravska St

11 000 Belgrade

Serbia

Phone number: (+381 11) 3608-997

E-mail: vsp@vma.mod.gov.rs

E-mail for subscription information: strliteratura@gmail.com

Website: www.vsp.mod.gov.rs

ISSN 0042-8450

ISSN Online 2406-0720 OPEN ACCESS

УПУТСТВО ЗА АУТОРЕ

Пре подношења рукописа за разматрање за објављивање у часопису „Војносанитетски преглед“ (ВСП) неопходно је да аутори пажљиво прочитају Упутство за ауторе, како би рукопис припремили у складу са пропозицијама часописа.

Рад који не испуњава услове овог упутства не може бити разматран и биће враћен ауторима да га допуне и исправе.

Аутори рада преносе своја ауторска права на издавача часописа Министарство одбране Републике Србије, Универзитет одбране наокон прихватљања рада за објављивање у ВСП.

ВСП се придржава препорука Међународног комитета уредника медицинских часописа (*International Committee of Medical Journal Editors – ICMJE*), Препоруке за спровођење, извештавање, уређивање и публиковање научних радова у медицинским часописима (доступно на <https://www.icmje.org/recommendations/>).

ВСП је доступан у режиму отвореног приступа. Сви чланци могу се бесплатно преузети са сајта часописа и користити у складу са лиценцом **Creative Commons Autorstvo-Deliti pod istim uslovima (CC BY-SA) (<https://creativecommons.org/licenses/by-sa/4.0/deed.en>)**.

СЛАЊЕ РУКОПИСА

Рукопис рада и сви прилози уз рад достављају се као један документ (прилози су инкорпорирани у текст и позиционирани на крају рукописа иза одељка Литература) искључиво електронски преко система за пријављивање *Aseestant*. Ради очувања квалитета фотографија, препоручује се достављање слика и као посебних фајлова, јер Word може смањити њихову резолуцију, како би се избегла компресија слика и евентуални губитак квалитета.

Сви аутори и рецензенти морају бити регистровани корисници система са јединственом е-маил адресом. Регистрацију је могуће извршити на: <http://aseestant.ceon.rs/index.php/vsp/user>. Техничко упутство за коришћење система електронске пријаве доступно је на: <https://aseestant.ceon.rs/index.php/vsp/about/submissions>.

Уколико имате проблем са подношењем рукописа путем платформе *Aseestant* можете се обратити за помоћ Редакцији часописа слањем е-мајла на адресу: vsp@vma.mod.gov.rs.

ОПШТА УПУТСТВА

ВСП објављује радове који до сада нису претходно објављени (у целини или делом), који се не разматрају за објављивање нити су прихваћени за објављивање у неком другом часопису.

ВСП не разматра радове који су претходно објављени као препринт верзије.

Часопис прихвата и радове чији су резултати претходно приказани на научним или стручним склоповима и објављени у виду апстракта, под условом да ти резултати нису објављени са DOI бројем (нпр. проширен апстракт у додатку неког часописа).

Уколико је део резултата поднетог рукописа претходно саопштен на научном/стручном склопу или је део докторске дисертације, у Пропратном писму Уредништву потребно је навести званичан назив склопа, место и време одржавања, и да ли су саопштени резултати публиковани и у којој форми (нпр. исти или другачији наслов или сакетак), а у Напомени на крају рукописа то треба посебно назначити.

Радови се објављују на енглеском језику. Појединачне категорије радова (нпр. историја медицине/стоматологије/фармације) се по одлуци Уредништва ВСП могу објавити и на српском језику. Све категорије рукописа осим категорија уводник, писмо уреднику, истраживачко писмо, приказ књиге, извештај са научног или стручног склопа се објављују као апстрактима на српском и енглеском језику (у склопу рукописа). О структури и обиму апстракта видети детаљи у одељку Апстракт овог Упутства.

За писање рукописа користити програм *Word*, font *Times New Roman*, величину слова 12, проред 1,5. Величину странице подсветити на формат А4, са левом маргином од 4 цм а преостале три 2 цм. Текст куцати без дељења речи (хифеније), а после сваког знака интерпункције ставити само један празан карактер. Ако се у тексту користе специјални знаци (символи), користити font *Symbol*.

Подаци о коришћеној литератури у тексту означавају се арапским бројевима у суперскрипту, редоследом којим се појављују у тексту.

Странице нумерисати редом у доњем десном углу, почев од прве стране (изузимајући насловну страну).

При писању текста на енглеском језику придржавати се језичког стандарда *American English*. Обавезно је коришћење међународног система мера (SI). Изузетак чине крвни притисак (mm Hg) и температура (°C).

Приликом писања користе се стандардне скраћенице. Избегавати скраћенице у наслову и апстракту осим уколико је неопходно. Пун назив са скраћеницом у загради наводи се у њеном првом помињању, а даље у тексту само скраћенице, како у апстракту тако и у главном тексту. У закључку рада (не апстракта) нема скраћеница.

Не користити комерцијална имена лекова и других препарата, а уколико је то неопходно уз њихове називе обавезно навести и генеричка имена. Уређаји (апарати) се означавају фабричким називима, а податке о производијачу (назив и место) навести у облиму заградама. Уколико се у тексту користе ознаке које су спој слова и бројева, прецизно написати број који се јавља у суперскрипту или субскрипту.

Избегавати фонтове **bold** и курсив (*italic*) јер су резервисани за поднаслове. Изузети су обавезно писање курсивом оних назива који се тако морају писати (нпр. гени или стране речи - латински).

Групе испитника морају бити јасно дефинисане и доследно именоване кроз цео рад. За исти појам користити један, јединствен термин кроз цео рад. У одељку Резултати избегавати реченице које почивају са: „Табела X показује“ или „Слика X приказује“. Реченица треба да опише резултат, а ознака

табеле или слике да стоји у загради на крају описа. Реченице не би требало почињати скраћеницом, бројем или датумом. Избегавати предугачке реченице које умањују јасноћу текста и дати предност краћим јасним реченицама. Закључак формулисати новим реченицама, без преписивања већ изречених. Превод радова на енглески језик посредством *Google Translate* може изазивати неразумевање текста и стога се не препоручује.

У избору кључних речи користити *Medical Subject Headings – MeSH* (<https://www.nlm.nih.gov/mesh/meshhome.html>). Кључне речи у прихваћеном рукопису не подлежу ауторској коректури, пошто су оне дескриптори из Тезаруса које одређују стручни индексери.

ОБАВЕЗНА ПРАТЕЋА ДОКУМЕНТА

ИЗЈАВА АУТОРА И АУТОРСТВО

За сваки рукопис који се подноси на разматрање за објављивање у ВСП неопходно је да аутор(и) достави(е) *Образац за изјаву о ауторству (Изјаву аутора)* да рад претходно није публикован и да није истовремено поднет за објављивање у неком другом часопису, да су рукопис прочитали и одобрили сви аутори који испуњавају критеријуме ауторства, и контакт податак свих аутора у ради (имадр адресу, број мобилног телефона). У овом обрасцу се аутори изјашњавају о сваком могућем сукобу интереса или његовом одсуству. Сви аутори морају Изјаву аутора потписати својеручно.

За додатне информације о различитим врстама сукоба интереса видети препоруке Светског удружења уредника медицинских часописа (*World Association of Medical Editors – WAME*; <http://www.wame.org>).

ВСП поштује препоруке критеријума за ауторство које даје ICMJE (<https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html>). Ауторство се заснива на испуњењу сва четири критеријума: значајном доприносу концепцији рада, добијању резултата или анализи/тумачењу резултата; критичкој ревизији рукописа од знатног интелектуалног значаја; одобрењу финалне верзије рукописа која ће бити објављена и преузимању одговорности за све аспекте објављеног садржаја. Сви други учесници који су допринали изради рада, али нису испунили прописане критеријуме требају би да буду наведени у Захвалници уз прецизирање доприноса раду. Потребно је да особе наведене у Захвалници дају писмену сагласност.

ЕТИЧКА САГЛАСНОСТ

Сва истраживања која укључују људе и/или хумани материјал морају бити спроведена у складу са препорукама ICMJE (<https://www.icmje.org/recommendations/browse/roles-and-responsibilities/protection-of-research-participants.html>) и Хелсиншком декларацијом, ревизија 2024 (<https://www.wma.net/policies-post/wma-declaration-of-helsinki/>). Скенирану страну дозволе Етичке комисије (ЕК) надлежне институције које је одобрила истраживање, на којој се види датум издавања и предмет истраживања, аутори су у обавези да доставе истовремено са рукописом. Дозвола ЕК се доставља на језику на коме је издата и енглеском језику (може и оверена копија).

У одељку Методе мора бити наведено да је студија одобрена од стране надлежног ЕК, уз навођење назива институције и броја одлуке, као и да је спроведена у складу са етичким принципима за истраживања која укључују људе и/или хумани материјал.

Анонимност пацијената мора бити заштићена у складу са ICMJE препорукама. За сва истраживања која укључују податке о пацијентима који омогућавају директну или индиректну идентификацију, аутори су обавезни да прибаве писани пристанак информисаног пацијента, да у рукопису назначе да је пристанак пацијента прибављен, и да га по потреби доставе Уредништву.

У случају истраживања на животињама, аутори су дужни да доставе одобрење надлежног ЕК који води бригу о поштовању међународних стандарда о употреби лабораторијских животиња у истраживачке сврхе.

Уредништво може одбити радове за које процени да нису изведени у складу са међународним етичким стандардима.

РЕПРОДУКОВАЊЕ ПРЕТХОДНО ОБЈАВЉЕНОГ ЗАШТИЋЕНОГ МАТЕРИЈАЛА И/ИЛИ НЕОБЈАВЉЕНОГ ТУЂЕГ МАТЕРИЈАЛА

Уколико се користе претходно објављене илустрације (фотографије, схеме) уз обавезно цитирање извора преузимања потребно је доставити дозволу (писано одобрење часописа у коме су објављене) за њихову објаву у ВСП. Уколико се користе туђе необјављене илустрације (фотографије, схеме) потребно је доставити дозволу аутора илустрација, за њихову објаву у ВСП.

ПЛАГИЈАРИЗАМ

Од 2012. године сви рукописи достављени на разматрање у ВСП подвргавају се провери на потенцијални (ауто)плагијаризам посредством *SCIndeks Assistant – Cross Check (iThenticate)*. Рукописи код којих се доказје (ауто)плагијаризам биће одబијени. У зависности од степена и врсте утврђеног (ауто)плагијаризма ауторима се може изрећи забрана објављивања у ВСП-у (различите дужине трајања), уз обавештење надлежних тела у институцијама у којима аутори раде и релевантних професионалних удружења.

КОРИШЋЕЊЕ AI

Генеративна вештачка интелигенција (*artificial intelligence-AI*) или технологије које користе помоћ AI (AI-потпомогнуте) могу се користити само уз поштовање начела транспарентности (употреба AI мора бити јасно наведена у рукопису), одговорности (аутори остају у потпуности одговорни за тачност и оригиналност садржаја), проверљивости (сви учесници у публицистичком процесу морају проверити да AI није унела измишљене податке, цитате или тврдње) и повериљивости (ауторима и рецензентима је забрањено учитавање рукописа поднетих у ВСП у јавне AI сервисе).

Употреба AI алата је допуштена само за ограничено језичке и техничке интервенције у тексту рукописа: исправку граматике и правописа, стилско дотерирање ауторског текста, помоћ при форматирању, техничку асистенцији (попут исправљања кода). Аутори могу користити AI алате искључиво за креирање AI-потпомогнутог, или не и AI-генерисаног садржаја.

Аутори који су користили AI-потпомогнут садржај у обавези су да потпуно и тачно наведу употребу AI алата (тачан назив AI алата, датум приступа, коришћене упите и сврху употребе), гарантују оригиналност научног доприноса, избегавају било какву фабрикацију или манипулацију и поштују правила научне етике. Информације о коришћењу AI се наводе у одељку Методе или Захвалница.

Забрањено је користити AI алате за генерисање већег дела садржаја рукописа, креирање научних идеја, података и резултата, анализу и интерпретацију резултата, формирање закључака, измену слика, табела или графика (укључујући графичке сажетке), измену података или референци.

Недвосмислено утврђена недопуштена употреба AI за последицу има одбијање рада.

AI ни у ком случају не може бити аутор или коаутор рада, нити може као аутор бити цитиран у одељку Литература.

Ради заштите поврљивости, ниједан део необјављеног истраживања достављеног ВСП не сме бити унет у велики језички модел од стране аутора или рецензента.

Аутори који су користили неки од AI алата су у обавези да приликом подношења рукописа поднесу и [Извјаву о коришћењу AI](#).

ТИПОВИ РУКОПИСА

У ВСП се објављују следеће категорије и типови рукописа и саопштења: уводник, оригинални рад, претходно саопштење, кратко саопштење, приказ случаја и серија случајева, општи (наративни) преглед литературе, мини преглед, систематски преглед литературе, мета-анализа, систематски преглед литературе са мета-анализом, актуелна тема, у фокусу, рад из историје медицине/стоматологије/фармације, писмо уреднику, истраживачко писмо, клиничко истраживање, извештај са конгреса и научног скупа, приказ књиге, *In memoriam* и други прилози.

ОРИГИНАЛНИ ЧЛАНAK

Приказује нова и значајна открића у одређеној области уз детаљан опис коришћених метода истраживања, добијених резултата и изведених закључака. Листа референци треба да укључи најновије и најважније референце из области рада.

ПРЕТХОДНО САОПШТЕЊЕ

Представља приказ истраживања која нису завршена, са налазима који захтевају додатна истраживања и валидацију пре коначних закључака, али су добијене информације од интереса за научну и стручну јавност. Садржи сва поглавља као оригинални научни чланак, али у знатно скраћеном обиму. Аутори се подстичу да касније објаве пуну оригиналну научну студију са комплетним, валидираним подацима и свеобухватном анализом.

КРАТКО САОПШТЕЊЕ

Представља завршено истраживање које је мало по обиму, уско фокусирано са јасним закључцима на основу представљених резултата. Садржи сва поглавља као оригинални научни чланак, али у знатно скраћеном обиму. Сматра се коначном публикацијом тог специфичног, малог истраживања. Не може се поново објавити као чланак пуног обима (иако се подстиче накнадно истраживање које се надовезује на њега).

ПРЕГЛЕДНИ ЧЛАНЦИ

ОПШТИ (НАРАТИВНИ) ПРЕГЛЕД ЛИТЕРАТУРЕ

Преглед, критичка анализа и синтеза постојећих научних сазнава о изабраној теми. Аутори обухватају сву доступну припадајућу литературу уз одређени временски период приказујују резултате релевантних истраживања, идентификују недостатке, ограничења или контролерове и указују на правде будућих истраживања, дајући своје виђење проблема у виду закључног става. Аутори чланка ове категорије могу бити они који су објавили минимално пет радова публикованих у часописима са рецензијом (M20) из области прегледног рада.

МИНИ ПРЕГЛЕДНИ ЧЛАНАК

Сажет преглед постојеће литературе и најновијих достигнућа унутар дефинисаних аспеката одређене истраживачке области и њени нови и/или актуелни правци развоја.

СИСТЕМАТСКИ ПРЕГЛЕД ЛИТЕРАТУРЕ

Синтеза претходно објављених истраживања о одређеној теми коришћењем јасно дефинисаних и унапред одређених методолошких поступака за селекцију и евалуацију. Аутор мора да користи релевантне базе података, постави критеријуме укључивања и искључивања студија и примени транспарентну методологију. Неопходно је јасно дефинисање истраживачког питања (PICOS оквир), навођење смерница за одабир и дијаграма тока за селекцију студија (PRISMA).

МЕТА-АНАЛИЗА

Користи статистичке методе за комбиновање квантитативних података из више примарних студија како би се идентификовали општи трендови и проценила снага доказа о одређеној теми. Аутор мора да користи релевантне базе података, дефинише критеријуме за укључивање и искључивање и примене транспарентну и репродуцибилну методологију. Неопходно је јасно дефинисање истраживачког питања (PICOS оквир), навођење смерница за одабир и дијаграма тока за селекцију студија (PRISMA).

СИСТЕМАТСКИ ПРЕГЛЕД ЛИТЕРАТУРЕ СА МЕТА-АНАЛИЗОМ

Комбинује квантитативну и квантитативну синтезу, користећи статистичке технике за сумирање квантитативних резултата а квантитативну синтезу за описне/наративне налазе. Аутор мора користити релевантне базе података, јасно дефинисати критеријуме за укључивање и искључивање студија, и применити транспарентну и репродуцибилну методологију. Истраживачко питање мора бити јасно дефинисано према PICOS оквиру, уз навођење коришћених смерница за извештавање (нпр. PRISMA) и укључивање PRISMA дијаграма тока за приказ селекције студија.

АКТУЕЛНА ТЕМА

Разматра савремено, нерешено или контрадикторно питање од теоријског и практичног значаја, уз изношење сопствених резултата истраживања или најновијих важних података из литературе. Конструкција чланка је слободна а пожељне су кратке закључне напомене са јасном поруком.

У ФОКУСУ

Тематска, фокусирана анализа и/или кратак осврт на научни проблем који је у тематској области часописа, а који обрађује питање од значаја за научну заједницу и ширу стручну јавност.

КАЗУИСТИКА

ПРИКАЗ СЛУЧАЈА И СЕРИЈА СЛУЧАЈЕВА (≥4, ≤9)

Приказ случајева са ретком и необичном дијагнозом, дијагностичким процесом, стратегијама лечења, клиничким током, или исходом лечења, који могу бити од користи за клиничку праксу и медицинско образовање. Приликом писања потребно је користити CARE смернице (<https://www.care-statement.org/writing-a-case-report>). Неопходан је пристанак информисаног пацијента.

УВОДНИК

Уводници су нерепрезентирани текстови главног и одговорног уредника и/или чланова Уредништва намењени најави новог волумена, тематског броја, садржаја који су од значаја за струку и/или институције чијим члановима је јасносмо намењен као и уредници текстови по позиву. Уводници не треба да садрже необјављене или оригиналне податке, а морају укључити изјаву о сукобу интереса.

ПИСМО УРЕДНИКУ

Нерепрезентирани коментар/критика текста објављеног у ВСП. Пишу се у слободној форми, уз евентуално навођење података из литературе. Не смеју садржати необјављене резултате. Објављују се према одлуци главног и одговорног уредника.

ИСТРАЖИВАЧКО ПИСМО

Кратки приказ оригиналног истраживања, који садржи увод, методе, резултате и дискусију у сажетом облику (без поделе у посебне целине са поднасловима) и максимално до 2 прилога (табеле/слике). Не садржи апстракт и кључне речи али мора да испуни све опште услове за разматрање рукописа (укључујући процес рецензије).

ИСТОРИЈА МЕДИЦИНЕ/СТОМАТОЛОГИЈЕ/ФАРМАЦИЈЕ

Материјал значајан за расветљавање поједињих догађаја и/или приказ значајних личности из историје медицине/стоматологије/фармације, а посебно војне медицине/стоматологије/фармације.

КЛИНИЧКО ИСТРАЖИВАЊЕ

Оригинална рандомизована контролисана испитивања и опсервације студије утицаја једног или више средстава или мера на исход здравља људи, клиничку праксу и здравствену политику. Рукопис морају бити припремљени у складу са међународним смерницама (нпр. CONSORT – <https://www.consort-spirit.org/> или STROBE – <https://www.strobe-statement.org/>) и регистрована у неком од међународно признатих јавних регистара (нпр. ClinicalTrials.gov).

ПРИКАЗ КЊИГЕ

Садржи библиографске податке о публикацији (автори, изворни наслов, издавач, место и година издања), њен кратак садржај и критичке коментаре садржаја, стила и значаја књиге у датој области. Рукопис не сме бити дужи од 2 странице.

ИЗВЕШТАЈ СА НАУЧНОГ ИЛИ СТРУЧНОГ СКУПА

Приказ активности научног или стручног скупа, уз истицање најважнијих реферата или закључака, односно препорука од значаја за шире круг читалаца ВСП.

ОБИМ РУКОПИСА

Целокупни рукопис рада чине: насловна страна, апстракти на српском и енглеском језику са кључним речима, главни текст рада, захвалност (по потреби), списак литературе, прилози (табеле, слике, графикони, схеме, цртежи).

Обим рукописа за категорије оригинални рад, општи (наративни) преглед литературе, систематски преглед литературе, мета-анализа, систематски преглед литературе са мета-анализом износи до 5 000 речи.

Обим рукописа за категорије мини преглед, претходно саопштење, кратко саопштење, приказ случаја, серија случајева, актуелна тема, клиничко истраживање, историја медицине/стоматологије/фармације износи до 3 000 речи.

Рукописи за остале категорије/рубрике могу имати највише 1 500 речи.

ПРИПРЕМА РАДА

НАСЛОВНА СТРАНА

На првој страници рукописа треба навести следеће:

1. Наслов рада без скраћеница;
2. Пуна имена и презимена аутора (без титула, уз навођење ORCID броја за све ауторе који га имају) са ознакама следећим редом *+, †, ‡, §, ||, ¶, **+, †† ... итд.
3. Пун званичан назив установе у којима аутори раде, место и државу у којој се установе налазе (знаки *+, †, ‡, §, ||, ¶, **+, †† ... итд. показују редом установе у којима аутори раде);
4. На дну странице навести име и презиме, адресу за контакт, е-маил адресу и број телефона (мобилног/Viber или WhatsApp) аутора задуженог за кореспонденцију.

АПСТРАКТ

На другој страници рада пишу се апстракт и кључне речи. Апстракт се пише кратким и јасним реченицама. За категорије оригинални рад, претходно саопштење, кратко саопштење, систематски преглед литературе са метаанализом, мета-анализа, клиничко истраживање, апстракт је структурисан и треба да има следеће делове: Увод/Циљ, Методе, Резултати, Закључак. Сваки од наведених сегмената писати као посебан пасус који почине бодљованом речи. Навести најважније резултате (нумеричке вредности) и ниво статистичке значајности. Закључак мора бити директно повезан са резултатима рада. Обим апстракта не сме да пређе 300 речи.

За категорије приказ случаја и серија случајева апстракт има следећу структуру: Увод (у посљедњој реченици навести циљ), Приказ болесника, Закључак. Сваки од наведених сегмената писати као посебан пасус који почине бодљованом речи. Навести најважније резултате (нумеричке вредности) и ниво статистичке значајности. Закључак мора бити директно повезан са резултатима рада. Обим апстракта не сме да пређе 250 речи.

За остале категорије радова, општи (наративни) преглед литературе, мини преглед, систематски преглед литературе, актуелна тема, у фокусу, историја медицине/стоматологије/фармације апстракт нема посебну структуру и не сме да пређе 200 речи.

Водити рачуна да српска и енглеска верзија апстракта буду међусобно тачни и прецизни преводи. Ниједна реченица не сме постојати у једној верзији а да није преведена у другој.

КЉУЧНЕ РЕЧИ

Испод апстракта навести пет до седам релевантних кључних речи или израза који указују на садржај рада. Препорука је да се не понављају речи из назива рада. У избору кључних речи користити *Medical Subject Headings – MeSH* (<https://www.nlm.nih.gov/mesh/meshhome.html>).

СТРУКТУРА ГЛАВНОГ ТЕКСТА РАДА

Неопходно је да оригинални рад, претходно саопштење, кратко саопштење, мета-анализа, систематски преглед литературе са метаанализом, клиничко истраживање садржи поглавља: Увод (кратак приказ предмета истраживања уз навод циља рада у посљедњем пасусу), Методе (прецизан опис одабира испитника и примењених метода, укључујући статистичке методе, број дозволе сагласности надлежног ЕК), Резултати (приказани логичким редоследом без дуплирања приказа истих резултата на виши начин), Дискусија (без понављања података који су већ наведени у одељку Резултати; дискутовати само добијене налазе довођењем у везу са другим релевантним студијама, повезати дискусију и закључак са циљевима рада, по потреби нагласити лимитације истраживања), Закључак (који простира из резултата датог истраживања), Захвалица (по потреби), Литература.

Рукописи из категорија општи (наративни) преглед литературе, мини преглед, систематски преглед литературе, актуелна тема, у фокусу садрже следеће целине: Увод (циљ рада навести као последњи пасус Увода), Приказ болесника (идентитет болесника мора остати анониман), Дискусија, Литература.

Рукописи из категорије приказ случаја, серија случајева садрже следеће целине: Увод (циљ рада навести као последњи пасус Увода), Приказ болесника (идентитет болесника мора остати анониман), Дискусија, Литература.

Приказ болесника не сме имати више од пет аутора.

УПИТНИЦИ (Questionnaires)

Сви коришћени упитници који су употребљени као мерни инструменти за било који од испитиваних параметара, морају бити преведени на језик говорног подручја испитника уз навођење доказа о извршеној валидацији и културопшкој адаптацији поднећујући испитника.

ПРИЛОЗИ

Прилоге чији број треба да буде усклађен са дужином текста поставити на крај главног текста рукописа иза Литературе, а у самом тексту јасно назначити место које се односи на дати прилог. Крајња позиција прилога биће одређена у току припреме рада за публиковање.

Табеле

Наслов треба написати изнад табеле, а објашњења (легенду) испод ње. Табеле се означавају арапским бројевима према редоследу навођења у тексту. Табеле израдити искључиво у програму Word, кроз мени Table-Insert-Table, уз дефинисање тачног броја колона и редова који ће чинити. Куцати фонтом *Times New Roman*, величином слова 12, с једноструким проредом. Табеле морају бити јасне и имати све елементе неопходне за правилно разумевање шта је у њима приказано. Уколико приказане вредности имају „опсег“ или „референтне вредности“, то се мора додати.

У легенди испод табеле треба објаснити све скраћенице наведене на табели и све ознаке (нпр. слова у суперскрипту или бодљоване вредности). Такође, неопходно је прецизирати примењење статистичке методе.

Слике (илустрације)

Под сликама подразумевамо све облике графичких прилога (фотографије, пртежи, схеме и графикови). Слике треба уградити у рукопис на крају текста, после литературе и после табела (ако их има). Слике се означавају арапским бројевима према редоследу навођења у тексту. Велика слова А, Б, Ц итд. треба користити за означавање делова вишеделих слика. Слова, бројеви и симболи треба да су јасни и уједначен, а довољне величине да приликом умањивања буду читљиви. Додаци приказани на сликама морају бити сачувани као фотографије (не као изменљиви графички елементи), тако да се њихов положај не може мењати, како би се обезбедила тачност података приказаних на слици. Примају се искључиво дигиталне фотографије са минималном резолуцијом од 300 dpi и формата JPEG, PNG или PDF. Слике које не задовољавају наведене услове неће бити прихваћене за објаву. Димензије достављених слика би требало да буду приближне димензијама у којима ће слика бити објављена. Уколико аутори нису у могућности да доставе дигиталне фотографије, онда оригиналне слике треба скенирати у резолуцији 300 dpi и у оригиналној величини и као такве их доставити. Сви подаци на схемама и графиконима треба да буду исписани безсерифним фонтом ради лакше читљивости (нпр. Arial, Helvetica), величина слова не мања од 10 pt. Мерне јединице и скале морају бити јасно назначене. Децимални бројеви на графиконима морају бити приказани са тачком, а раздвајање хиљада мора бити означено зарезом (нпр. 1,234.56).

Видео-прилози (илустрације рада) могу трајати 1–3 минута и бити у формату avi, mp4(jfif). Уз видео доставити посебно слику која би била илустрација видео-приказа у е-издању и објављена у штампаном издању, као и линк ка платформи где је видео већ постављен.

У легенди испод илустрација треба објаснити све скраћенице, симbole, бројеве или слова који се користе за објашњење поједињих делова слике. У случају графикона прецизизрати примењене статистичке методе (по потреби), а код фотомикрографије навести детаље о врсти коришћеног бојења и увећању.

Уколико се приказују фотографије особа (болесника), лик мора бити „замућен“ или је потребно обезбедити писану дозволу лица са фотографије за њено коришћење. На прилозима (снимци рендген, скенера, ултразвука, итд.) потребно је уклонити све што може да идентификује болесника. Уколико је слика већ негде објављена потребно је цитирати извор узписано одобрење ако се ради о заштићеном материјалу.

СКРАЋЕНИЦЕ

Скраћенице користити само када је неопходно, и то за веома дугачке називе хемијских једињења, односно називе који су као скраћенице већ препознатљиви (нпр. ДНК). За сваку скраћеницу, осим стандардне јединице мере, навести пун назив при првом навођењу у тексту (укључујући апстракт). У наслову и апстракту избегавати коришћење скраћеница, у наслову их користити само ако су неопходне. За појмове који се у тексту помињу више од три пута препоручује се увођење одговарајућих скраћеница.

ДЕЦИМАЛНИ БРОЈЕВИ

У тексту рада на енглеском језику децималне бројеве писати са тачком (нпр. 22.7), а у тексту на српском језику са зарезом (нпр. 22,7). Кад год је то могуће, број заокружити на једну децималу и писати доследно кроз цео рад (нпр. ако је једна вредност 32,2, све остале морају имати једну децималну, нпр. 32,0).

ЈЕДИНИЦЕ МЕРА

Дужину, висину, тежину и запремину изражавати у метричким јединицама (метар – m, килограм (грам) – kg (g), литар – L) или њиховим деловима. Температуру изражавати у степенима Целзијуса (°C), притисак крви у милиметрима живиног стуба (mm Hg). Резултате клиничких и биохемијских меренja наводити у метричком систему према Међународном систему јединица (SI).

ЗАХВАЛНИЦА

Изнети допринос особе којој треба одати признање, али која не испуњава критеријуме за ауторство. Навести финансијску помоћ (спонзорство, стипендије, опрема и друго), као и назив пројекта у оквиру кога је истраживање спроведено.

СТАТИСТИЧКА АНАЛИЗА

У одељку Методе детаљно описати примењене статистичке методе како би била омогућена провера исправности виших примене и репродукција анализе. Резултати морају бити нумерички јасно приказани уз одговарајуће показатеље варijабилности и поузданости (нпр. стандардна девијација, стандардна грешка, интервал повећања). Прецизирати тип студије и описати начин на који је изведен. Навести критеријуме укључења и искључења. Навести софтвер и верзију компјутерског програма у коме је извршена статистичка обрада података. У одељку Резултати као и у легендама табела и/или прилога навести статистички метод који је коришћен за анализу приказаних резултата. Вредности p се увек пишу са почетном нулом (нпр. $p > 0.05$ а не $p > .05$).

ЛИТЕРАТУРА

Референце нумерисати редним арапским бројевима према редоследу навођења у тексту (укључујући табеле и легенде прилога). Препоручује се да већина цитираних радова буде млађа од десет година. Препоручује се да број цитираних оригиналних радова буде најмање 80% од укупног броја референци, односно број цитираних књига, поглавља у књигама и прегледних чланака мањи од 20%. Сви радови, без обзира на језик извора, цитирају се на енглеском језику, а изворни језик наводи се у загради, иза цитираних референци.

Сви подаци о цитираној литератури морају бити тачни, а цитирани радови лако приступачни читаоцима. Уз сваку референцу навести DOI број. Препоручје се цитирање само радова објављених у часописима које индексирају *Current Contents*, *Index Medicus (Medline)*, *Excerpta Medica*, *Scopus*, *Web of Science*.

Није дозвољено цитирање апстраката, секундарних публикација, усмених саопштења, необјављених радова, службених и повериљивих докумената, Википедије, преприм објава и *in press* чланака, повучених радова (*retracted article*), радова објављених у предаторским часописима.

Приликом цитирања сајтова, не може се цитирати насловна страна већ се мора цитирати она страна са које је информација преузета. Свака наведена референца мора бити доступна за проверу *online*. Уколико референца не постоји на интернету (нпр. архивски материјал и сл.), аутор мора да достави извор одакле је преузет цитирану литературу односно може сликати или скенирати документ и послати на е-мејл: strliteratura@gmail.com.

Референце се цитирају према Ванкуверском стилу који је успоставио ICMJE (https://connect.ebsco.com/s/article/Citing-Articles-in-Vancouver-ICMJE-Style?language=en_US).

Примери цитирања:

Чланак са 1 до 6 аутора

Nikolić A, Biočanin V, Rančić N, Dušpara M, Đurić D. Serbian translation and validation of the SF-36 for the assessment of quality of life in patients with diagnosed arterial hypertension. *EABR Exp Appl Biomed Res* 2023; 24(3): 227-34. DOI: 10.2478/sjcr-2020-0073

Чланак са више од 6 аутора

Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. *J Clin Sleep Med* 2017; 13(3): 479-504. DOI: 10.5664/jcsm.6506

Волумен са суплементом

Smith JA, Brown LM. Effects of vitamin D on immune response. *J Nutr Sci* 2024; 15(Suppl 2): S45-53.

Свеска са суплементом

Zhou Q, Shi R, Kopjar B, Wang H, Chen D, Li H, et al. Adjacent Intervertebral Disc Changes in Patients with Isobar Semirigid Dynamic Stabilization System. *Global Spine J* 2017; 4(1 Suppl): s-0034-1376699.

Волумен са делом (Pt)

Ozben T, Nacitarhan S, Tuncer N. Plasma and urine sialic acid in non-insulin dependent diabetes mellitus. *Ann Clin Biochem* 1995; 32(Pt 3): 303-6.

Свеска са делом

Poole GH, Mills SM. One hundred consecutive cases of flap lacerations of the leg in ageing patients. *N Z Med J* 1994; 107(986 Pt 1): 377-8.

Свеска без волумена

Turan I, Wredmark T, Fellander-Tsai L. Arthroscopic ankle arthrodesis in rheumatoid arthritis. *Clin Orthop* 1995; (320): 110-4.

Без волумена и свеске

Browell DA, Lennard TW. Immunologic status of the cancer patient and the effects of blood transfusion on antitumor responses. *Curr Opin Gen Surg* 1993; 325-33.

Пагинација римским бројевима

Fisher GA, Sikic BI. Drug resistance in clinical oncology and hematology. Introduction. *Hematol Oncol Clin North Am* 1995; 9(2): xi-xii.

Књига

Штампана књига

Ritter JM, Flower RJ, Henderson G, Loke YK, MacEwan D, Robinson E, et al. Rang & Dale's Pharmacology. 10th ed. London: Elsevier; 2023. p. 3630.

Књига у електронском формату

Shreeve DF. Reactive attachment disorder: a case-based approach [Internet]. New York: Springer; 2012 [cited 2012 Nov 2]. 85 p. Available from: <http://dx.doi.org/10.1007/978-1-4614-1647-0>

Поглавље

У едитованој књизи

Metcalf CS, Smith MD, Wilcox KS. Pharmacotherapy of the Epilepsies. In: Brunton LL, Knollmann BC, editors. *Goodman & Gilman's The pharmacological basis of therapeutics*. 14th ed. NY: McGrawHill; 2023. p. 385-411.

У едитованој електронској (online) књизи

Halpern-Felsher BL, Morrell HE. Preventing and reducing tobacco use. In: Berlan ED, Bravender T, editors. *Adolescent medicine today: a guide to caring for the adolescent patient* [Internet]. Singapore: World Scientific Publishing Co.; 2012 [cited 2012 Nov 3]. Chapter 18. Available from: http://www.worldscientific.com/doi/pdf/10.1142/9789814324496_0018

Publishing Co.; 2012 [cited 2012 Nov 3]. Chapter 18. Available from: http://www.worldscientific.com/doi/pdf/10.1142/9789814324496_0018

Веб страница

Интернет страница

Diabetes Australia. Diabetes globally [Internet]. Canberra ACT: Diabetes Australia; 2012 [updated 2012 June 15; cited 2012 Nov 2]. 85 p. Available from: <http://www.diabetesaustralia.com.au/en/Understanding-Diabetes/Diabetes-Globally/>

Део интернет странице

Australian Medical Association [Internet]. Barton ACT: AMA; c1995-2012. Junior doctors and medical students call for urgent solution to medical training crisis; 2012 Oct 22 [cited 2012 Nov 2]; [about 3 screens]. Available from: <https://ama.com.au/media/junior-doctors-and-medical-students-call-urgent-solution-medical-training-crisis>

Зборник радова са конгреса

Kimura J, Shibasaki H, editors. Recent advances in clinical neurophysiology. Proceedings of the 10th International Congress of EMG and Clinical Neurophysiology; 1995 Oct 15-19; Kyoto, Japan. Amsterdam: Elsevier; 1996.

Рад из зборника

Bengtsson S, Solheim BG. Enforcement of data protection, privacy and security in medical informatics. In: Lun KC, Degoulet P, Piemme TE, Rienhoff O, editors. MEDINFO 92. Proceedings of the 7th World Congress on Medical Informatics; 1992 Sep 6-10; Geneva, Switzerland. Amsterdam: North-Holland; 1992. p. 1561-5.

Дисертација

Knežević D. The importance of decontamination as an element of complex therapy of poisoning with organophosphorous compounds [Ph.D. Thesis]. Belgrade: School of Veterinary Medicine; 1988. (Serbian)

Остали објављени чланци

Новински чланак

Vujadinović J. The inconsistency between federal and republican regulation about pharmacies. In between double standards. *Borba* 2002 February 28; p. 5. (Serbian)

Свето писмо

Serbian Bible. Belgrade: British and Foreign Biblical Society; 1981. Book of Isaiah 2: 19-22. (Serbian)

Речници и сличне референце

Koštić AD. Multilingual Medical Dictionary. 4th Ed. Belgrade: Nolit; 1976. Erythrophobia; p. 173-4.

Остале примере навођења публикација можете видети на https://www.nlm.nih.gov/bsd/uniform_requirements.html

НАКНАДЕ ЗА ОБЈАВЉИВАЊЕ ЧЛАНКА

Накнада за објављивање рада се плаћа након прихватања рукописа за објављивање. Одлука о прихватању мора бити потврђена на седници Уредништва ВСП. Радови за које нису плаћене накнаде неће бити објављени.

Уплати није гаранција да ће рад бити објављен у ВСП.

Сви аутори дужни су да плате Article Processing Charge за покриће трошкова језичке, стручне и техничке обраде рукописа, као и његовог објављивања. Домаћи аутори плаћају износ од 5 000 динара, а инострани 150 евра.

Институционална претплата (10 000 динара) важи искључиво за институције (установе) које желе да добијају физичке копије месечних бројева часописа.

У години у којој су уплатили претплату аутори могу поднети неограничен број радова у ВСП.

Копије уплатнице неопходно је доставити на е-мејл адресу: strliteratura@gmail.com ради евидентије уплате.

Од претплате су ослобођени рецензенти ВСП (потребно је доставити ID број рада или наслов рада који су рецензирали), студенти на докторским студијама (уз потврду о уписаној текућој години), уредници. Уредништво задржава право да може умањити износ претплате или ослободити ауторе плаћања претплате на образложену молбу аутора.

За све додатне информације, можете се обратити на доле наведене адресе и бројеве телефона.

Редакција часописа „Војносанитетски преглед“

Ул. Црнотравска 17

11 000 Београд

Србија

Телефон: (+381 11) 3608-997

Е-пошта: vsp@vma.mod.gov.rs

Е-пошта за информације у вези са претплатом: strliteratura@gmail.com

Интернет страница: www.vsp.mod.gov.rs

ISSN 0042-8450

ISSN Online 2406-0720 OPEN ACCESS

